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1. INTRODUCTION 

It is well established that the basic density of Norway spruce is strongly, 
negatively correlated with the ring width (Klem 1934, Nylinder 1953, Eric-
son 1960, Bernhart 1964, Hakküa 1966 and Olesen 1973). This negative 
correlation is mainly a result of the decrease in latewood percentage with 
inoreasing ring width (Bernhart I.e.). Therefore, when investigating the 
influence of various factors on the basic density, ring width must be taken 
into consideration in case the factor in question affects the ring width. This 
can be done, for example, by a multiple regression analysis or by comparing 
basic density/ring width curves for different factors. In the following a 
basic density/ring width curve is termed: density level, as the curve imay 
assume different levels with the variation of a factor. 

In previous investigations into the effect of various factors on basic 
density I have found it suitable to make an initial analysis of the effect of 
these factors one by one comparing density levels. For example, the effect 
of the height of the tree is assessed by comparing density levels from dif­
ferent heights of the tree. In such an analysis it is necessary to work with 
a model expressing the interrelation between basic density and ring width. 
The aim of this study is to derive such a model — a model which is not only 
an empirical description of the interrelation between the two variables, but 
one which also expresses some of the causal relationships. 

2. DERIVING A MODEL 

Latewood percentage is the factor with which the basic density of Nor­
way spruce is most strongly correlated (Bernhart 1964). However, as the 
latewood percentage is also strongly coirrelated with the ring width, a strong 
correlation between basic density and ring width is also found. Further­
more, while latewood percentage is difficult to estimate accurately, ring 
width can easily be precisely determined. Thus, although ring width as such 
cannot affect the basic density, ring width is selected because it is a suitable 
independent variable which has the property of reflecting factors which 
have a direct effect on the basic density, such as latewood percentage, rain­
fall in the growing season, soil type etc. 

An annual ring can be divided into earlywood and latewood, cf. Figure 1. 
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F i g . 1. Section of annual ring divided into early wood and latewood. RE = mean 
basic density of earlywood, and RL = mean basic density of latewood. 

F i g. 1. Sektion af årring opdelt i vår- og høstved. RE = gennemsnitlig rumtæthed 
for vårved, og RL — gennemsnitlig rumtæthed for høstved. 

From the figure it can be seen that the basic density R can be expressed 

as : 

R = 
RE («ra — Ttr2) + RL (mrjj — m\) 

7tr2 — mr2 

RE (r2 
r i ) (r2 + rj + RL (r, — r2) (a-, + <r2) 

As 
( r 3 -

rx = x — z, 
• r2 = z, and 
r, = x 

riMrs + rj) 

where x = ring width, and z = latewood width, we get 

RE (x — z) Or, + r2) + RLz (r2 + r . ) 
R = 

* ( r i + r
3 ) 

(1) 

As the relative differences between the three sums rx + r2, r2 -f- r3, and 
r1 -f- r3 decrease rapidly with increasing distance from the pith, and as these 
differences are less than one per cent for a complete mature tree, the three 
sums can be ignored, so that equation (1) can be written as 

R 
RF (x — z) + Rtz 

(2) 
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Furthermore, if the juvenile wood (i.e. the inner annual rings centred 
on the pith) is omitted, the error made in equation (2) is negligible. 

In deriving equation (2), only one annual ring or a fraction of an annual 
ring was considered. However, it is possible to generalize equation (2) in 
such a way as to be valid for both trees and populations of trees. In a pilot 
study of the dependence of the basic density of earlywood and latewood on 
ring number, it was found that the mean earlywood density, RE, decreases 
over the first rings, whereafter it remains relatively constant. The mean 
latewood density, RL, on the other hand, increases over the first 25 rings, 
after which it remains relatively constant, though with a slight tendency 
to decrease after ring no. 40—50, cf. Figure 2. These results are in agreement 
with earlier findings (Panshin & de Zeeuw 1970). 

Basic density, kg /m 3 

Rumtæthed, kg Im1 

0 I i 1 1 1 1 1 1 
0 10 20 30 40 50 60 70 

Ring number 
Årring nr. 

F i g . 2. The dependence of earlywood and latewood basic density on ring num­
ber. Each line represents the basic density of the earlywood or latewood in a tree. 

Dotted curves = smoothed means. 
V i g. 2. Sammenhæng mellem årringsnummer og vår- og høstveddets rumtæthed. 
Hver linie repræsenterer vår- hhv. høstveddets rumtæthed i et træ. Stiplede kur­

ver = udjævnede gennemsnit. 

Figure 2 shows that, in adult wood, the average densities of earlywood 
and latewood seem to be independent of ring number. Thus, the two means 
represent the means of the earlywood and latewood densities at a certain 
height of the tree. If these means should vary with the height in the tree, 
the means in equation (2) then represent the means of the mean values at 
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different heights, in other words the means of the earlywood and latewood 
densities for the whole tree. If more than one tree form part of the investi­
gation, RE and RL then represent the means of all trees involved. The vari­
ation about the means, RE and RL is mainly caused by climatic differences 
from growing season to growing season. The mean values are therefore an 
expression of the genotypic values of the population for the environment 
in question. 

Within the juvenile wood the basic density of both the earlywood and 
latewood changes with ring number so that each ring number has its own 
density level. 

If the width of the latewood, z, can be expressed as a function of the 
ring width, equation (2) can be solved with respect to x, and the inter­
relation between basic density and ring width can be derived. Investi­
gations by Bertog (1895), Trendelenburg (1936), Johansson (1939), Nglin-
der (1951), Klem (1957), and Bernhart (1964) show unequivocally that the 
percentage of latewood decreases with increasing ring width for Norway-
spruce. This is illustrated in Figure 3, which is based on the mean values 
presented by Nglinder (I.e.). 

Such a relationship between latewood percentage and ring width results 

Latewood percentage 
Høstvedsprocent 

30 

20-

10 -

3 4 
Ring width.mm 
A rrings bredde, mm 

F i g . 3. Relationship between latewood percentage and ringwidth. 
From Nylinder (1951). 

F i g. 3. Sammenhæng mellem høstvedsprocent og årringsbredde. 
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in an increase in latewood width with increasing ring width. This is illu­
strated in Figures 4 and 5, and it is seen that the curves drawn through the 
observationis are curvilinear leveling off with increasing ring width. (These 
figures are based on data presented by Nylinder (I.e.) and Klem (I.e.), the 
original data being converted from latewood percentage to latewood width 
by the au thor) . Furthermore, the curves -> (0,0) for x -> 0. 

Latewood w id th ,mm 
Høstvedsbredde, mm 

Ring width,mm 
Årringsbredde, mm 

F i g . 4, Relationship between latewood width and ring width. The dots represent 
the means of 2i3, 33, 36>, and 8 trees respectively (from left to right). From Nylin­
der (1951). The hyperbola 1/y = 0.87 + 2.5/x has been fitted by the author. 

The curve -> (0.0) for x -» 0. 
V i g. 4. Sammenhængen mellem høstvedsbredde og årringsbredde. Punkterne 

repræsenterer gennemsnit af 23, 33, 36 og 8 træer fra venstre til højre. 

The curves which fit the observations in Figures 4 and 5 resemble among 
others hyperbolas and parabolas. For example, Nylinder's data fit closely 
to the hyperbola 1/y = 0.87 + 2.5/æ, cf. Figure 4. 

If the curves in Figures 4 and 5 are interpreted as hyperbolas, these 
types of hyperbolas are given by the formula 
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Latewood width,mm 
. _ Hestveds bredde.mm 

3 4 
Ring width.mm 
Arringsbre dde. mm 

F i g . 5. Relationship between latewood width and ring width. Each dot repre­
sents the mean of a tree. From Klem (1957). The curve through the data has been 

fitted by the author. The curve —>• (0.0) for x ->• 0. 
F i g. 5. Sammenhæng mellem høstvedsbredde og årringsbredde. Hvert punkt 

repræsenterer gennemsnit af et træ. Udjævningskurven tegnet af forfatteren. 

l / z = u -\- v/x or z = 
UX + V 

where x = ring width, z = latewood width, and u and v are two positive 
constants. 

If z = x/(ux -f v) is substituted in equation (2), the following equation 
is obtained: 

R = 

R E (o ; ) + R L ( — ) 
u x - f o ux -\- v 

= RE + 
R L - R E 

UX -\- V 
(3) 
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Since RE, RL, u, and v are four constants, equation (3) can be written as 

1 h i 
(4) R = a + x -f- c 

where all three comsitaints are positive and a is equal to the basic densilty of 
the earlywood. 

If the curves in Figures 4 and 5 are taken as parabolas with vertex of 
(—u, — u ) , we have 

z + v = p]/x-\- u (5) 

As the parabola passes through the origin, i.e. z = 0 for x = 0, we have 

py'u. — v = 0 for x = 0 

or 

which substituted in equation (5) gives 

z = p\/x + u — pyu == p(\/x + u — j /u ) 

If equation (6) is substituted in equation (2), 

(6) 

R 

RE + 

RK(x — p(\/x + u — yu)) H-RjoCl/'x + u — ]/U) 

X 

p ( R L — R E ) (j/æ + u — j / u ) 

= RE + 
p ( R L - R E ) 

(7) 
|/.x + u+)/u 

As RE, RL, p and u are four constants, equation (7) can be written as 

_ 

(8) R = 
b 

- a -\ • 

j/x + c+j/c 

where all three constants are positive, and a is equal to the basic demsity 
of the earlywood. 

The two derived models, equation (4) and (8), are very similar. They 
are both hyperbolas, with the horizontal asymptote R = a, cf. Figure 6. 
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F i g . 6. The graph of (4) and (8). 
F i g. 6. Formlerne (i-) og (S) afbildet grafisk. 

3. MATERIAL AND METHODS 

The material used originates from previous studies, and from investi­
gations in progress concerning the basic density of Norway spruce, and 
includes 240 trees from different growth localities in Denmark. 

In most cases the basic density is determined using 4.2 mm increment 
cores taken at breast height. All samples are saturated with water and then 
examined for defects over a light box. All annual rings with defects are cut 
out and discarded. As increment cores often contain several annual rings 
with defects, especially compression wood, a large proportion of the material 
frequently has to be discarded. If the material ds rather simall, a relatively 
large percentage of defects could be detrimental to the investigation, so that, 
in order to utilize the available material to best advantage, the following 
technique has been adopted whenever possible. A disc, at least 3 cm thick, 
is cut out from each tree and brought to the laboratory. Each disc is 
examined for defects, and a stick, 6—8 mm thick (axially), and 8—10 mm 
wide (tangemtiaMy) is cut out from pith to bark from a faultless section of 
the disc. In this way the amount of defects in the wood .samples are mini­
mized. The volume of these samples is about five times as large as that of 
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the increment core samples. Although this sampling technique might result 
in a systematic sampling from mainly one compass direction, compression 
wood usually occurring on the leeside of the tree in areas with prevailing 
winds from one compass direction, this has no influence on the density 
level, as the variation of the basic density with the compass direction from 
a practical point of view is dependant only upon ring width (Olesen 1973). 
After outiting out the sample, a final examination for defects takes place 
over a lightbox. (It is in order to facilitate this examination that the thick­
ness of the sticks is only 6—8 mm. With thicker sticks, which would not 
permit the transmission of light, the judgement of defects would be doubt­
ful). The cores (sticks) are then cut up in segments, each containing annual 
rings of almost equal width, the number of annual rings in each segment 
being determined by the number of equally wide rings which happens to 
occur in succession. By this method the basic densities of the narrow and 
wide annual rings are determined separately, which is very important as 
the extreme values almost exclusively determine the slope of the regression 
curve. The values around the mean ring width have almost no effect on the 
determination of the slope. 

The volume of the green wood samples are determined using the water 
displacement method (Olesen 1971), while oven dry weight is determined 
after 24 hours of drying at 103 C° ± 1°. Both factors are determined with 
an accuracy of ± 0.1—0.8 per cent, dependent on the size of the test pieces. 

The statistical analyses of the two regression curves 

R = = a + — — (4) 
X -f- C 

R = a + ^ = - J ' = (8) 
j /x + c + | / c 

are carried out as linear regression analyses as the regression curves can 
be transformed to a straight line R = a -f- bx', where x' = l/(x + c), and 
x' = l / ( [ / x -f- c -f- j /c) respectively. Thus, linear regression analyses may 
be applied to the transformed observations, if f (R) is normally distributed 
with the mean value 

M {f (R) J g(x)} = a + b(g(x) — g7^)) 

and the variance 

V { f ( R ) | g ( x ) } = o*. 

In the analysis, each segment is given a weight equal to the number of 
annual rings in the segment. The equations are then solved with respect 
to R for varying values of c in the interval 0 < c < 11.0. A computer pro-

Det forstlige Forsøgsvæsen. XXXIV. H. 4. 1. dec. 1976. 3 
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gramme using the theory of least squares has been developed by Lie. agro. 
P. Brun Madsen. The programme determiines and selects the value of 
c giving the smalileist variance about the regression curve, and thus the 
equation which best fits the observations. 

4. EXAMPLE 

The following example is given in order to illustrate the differences 
between an ordinary linear regression analysis and an analysis of the 
regression curve R = a -\- b/ (x -f- c) after its transformation to a straight 
line. The result of varying c-vallues will also be demonstrated. 

The data used in the example originate from an analysis of the basic 
density of 15 plus tree candidates. The juvenile wood is excluded and only 
ring numbers greater than 15 form part of the analysiis. The 128 obser­
vations are plotted in Figure 7 with one linear and two curvelinear regres­
sion lines. 

Figure 7 shows that the graph which best fits the observations is a curve 
in which basic density decreases with increasing ring width. This also is 

Basic density, kg/m 
Rumtæthed, kg/m3 

600 -

500 -

400 

300 • 

R= 333,3+ 1 -^J 

i v * - — —K= 243,5_+ 574,5 
^ ? * é§7 L-?-

0 1 2 3 4 5 6 7 
Ring width,mm 
Årrings bredde.mm 

F i g . 7. The interrelation between basic density and ring width for 15 plus tree 
candidates. A comparison of three regression equations. 

F i g. 7. Sammenhængen mellem rumtæthed og årringsbredde hos 15 plustræer. 
En sammenligning mellem tre regressionsligninger. 
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in agreement with previous experiences. The result of the regression ana­
lyses of the straight line R = a - j - bx and the hyperbola R = a -\- b/(x -}- c) 
is shown in Table 1 for varying values of c. 

T a b l e 1. Comparison of regression analyses, 

Equation 

R = a + bx 
R = a + b/x 
R = a+fc/(x + l) 
R = a+b/(x 
R = a + b/(x 

r+1.5) 
:+2) 

a 

487.2 
333.3 
267.4 
243.5 
22.1.1 

b 

—34.6 
12,4.6 
412.8 
574.5 
752.4 

* 

40.5 
40.2 
36.3 
36.2 
36.4 

S 

a 

3.58 
3.55 
3.20 
3.20 
3.21 

sb 

2.82 
10.0 
27.9 
38.8 
51.1 

r 

—0.738 
0.742 
0.797 
0.797 
0.795 

The correlation coefficient of —0.738 for the linear regression analysis is 
unusually high, and the difference between the correlation coefficients frotm 
regression analyses using the functions R = a + bx and R = a -{- b/(x -\- c) 
will usually be greater. This will be discussed in more detail later. 

5. RESULTS AND DISCUSSION 

In the following, results from two investigations carried out at Ålholni 
and Ghristianssaede forests are used in the analysis of the two derived 
equations (4) and (8), cf. p. 347. The standard deviation, s, the coefficient 
of correlation, r, and the parameter, c, from each of these regressions, are 
given in Table 2 for the best fits of c. 

The correlation coefficients in Table 2 are higher than those foiund by 
other authors in similar investigations, i.e. investigations including several 
trees, and excluding the juvenile wood. For example, Bernhart (1964) and 
Hakkila (1968) found correlation coefficients of —0.68 and —0.65 respec­
tively applying linear regression analysis. As the square of the correlation 
coefficients, r2, may be described as that fraction of the total variance of R 
which is determined by, or calculable from, the value of x, about 45 % of 
the variance of R can be attributed to the variation in ring width in these 
investigatioins. In the investigations referred to in Tables 1 and 2, about 
65 % of the variance of R can be attributed to variation in ring width. Thus, 
an appreciably better analysis is obtained by combining the technique 
described in section 3 with the use of the hypothesis, R = a-\-b/(x-\-c), 
which is in accordance with our theoretical and practical knowledge of the 
behaviour of the basic density with varying ring width. 
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T a b l e 2. Comparison of equation (4) and (8). 

Plot 
No. 

Nos. 
of 

seg­
ments 

Ålholm, 15 trees per plot 
1 
2 
4 
5 
6 
7 
9 

10 
All plots 

Chri sti an ssaed e 
1 + 9 
2 + 6 
4 + 8 

3 
5 

10 
11 

All plots 

95 
68 
74 
46 
47 
87 
83 
79 

579 

10 trees 
77 
81 
67 
32 
47 
39 
25 

368 

R = 
s 

30.0 
29.5 
28.7 
,38.0 
41.6 
,37.6 
21.9 
34.1 

34.2 

per plot: 
40.9 
33.6 
31.5 
34.5 
36.8 
,31.7 
41.5 
38.3 

(4) 

a+b/(x+c 
r 

0.75 
0.83 
0.74 
0.80 
0.81 
0.61 
0.83 
0.65 
0.87 

0.71 
0.65 
0.86 
0.88 
0.81 
0.80 
0.71 
0.76 

) 
c 

3.2 
0.8 
9.6 
1.6 
8.0 

11.0 
3.2 
4.8 

2.0 

11.0 
11.0 
,3.2 
1.6 
6.4 

11.0 
0.1 

3.3 

n = 
s 

30.0 
29.3 
28.7 
38.6 
41.6 
37.6 
22.0 
34.1 

35.1 

40.8 
33.5 
31.6 
35.3 
36.8 
31.6 
41.5 
38.4 

(8) 

a + b/(\/x-tc 
r 

0.75 
i0.83 
0.74 
0.79 
0.81 
0.61 
0.83 
0.65 
0.86 

0.71 
0.65 
0.86 
0.87 
0.81 
0.80 
0.71 
0.76 

+ Vo 
c 

1.6 
0.0 
4.0 
1.6 
,3,2 
4,8 
,1.6 
1.6 
1.6 

11.0 
11.0 

1.6 
0.8 
3.2 

11.0 
0.0 
1.6 

From Table 2 it can be seen that the standard deviation for the two 
equations differs little within plots. On an average, equation (4) is better 
than (8), but the difference is so small that from a piracticail point of view 
the equations seem to be equally good. However, the use of the second hypo­
thesis, R = a-\-b/(\''x-\-c - j - j / c ) , in most cases leads to a negative value of 
a for the best fit of c. This is not possible as a ithearetically represents the 
basic density of the earlywood. Furthermore, this equation is more com­
plicated than the first equation. Thus, from a theoretical point of view 
the use of the first hypothesis 

R = a + 
x-\-c 

leads to the best result, and as this hypothesis also fulfills o,ur requirement 
to simplicity, this hypothesis is preferred. 

The behaviour of this hyperbola is in all respects in accordance with 
our experience, i.e. the basic density decreases with increasing ring width, 
with decreasing rapidity, so that it resembles a hyperbola with a horizontal 
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asymptote. Thus, both from a theoretical and an empirical point of view 
the hyperbola, R = a-\-b/(x-\-c) satisfies our knowledge and thereby re-
fleets — at least partly — a causal relationship between basic density and 
ring width. In the following this regression equation will be dealt with in 
more detail. 

The parameter a determines the level of the curve, as y = a is horizontal 
asymptote. Thus, a change in a with b and c constant will lead to a dis­
placement of the curve parallel to the y-axis. 

The parameter b determines the curvature of the hyperbola, so that 
increasing fc-values with a and c constant lead to increasing curvature. 
Likewise a change in c, with a and b constant, leads to a displacement of 
the curve parallel to the x-axis. Although theoretically, x = —c is the ver­
tical asymptote to the curve, the ring width will always be greater than 
zero, so that the asymptote does not exist in the defined range. 

Similarly c should always theoretically be greater than zero as R -> °° 
for x —> 0 is not possible. However, when material is limited to few samples, 
the author has often found the best fit with c = 0, although when more 

T a b l e 3. Comparison of parameters for varying c-values with R = a+b/(x+c). 

Material 

Ålholm, all plots 

579 segments from 

120 trees 

Christianssaede 

all plots 

368 segments from 

100 trees 

c 

0.0 
0.5 
1.0 
1.5 
2.0* 
2.5 
3.0 
3.5 
4.0 
8.0 

0.0 
0.5 
1.0 
1.5 
2,0 
2,5 
3,0 
3.2* 
3.5 
4.0 
8.0 

S 

45.52 
36.96 
34.87 
34.25 
34.16 
34.27 
34.46 
34.68 
34.91 
36.37 

46.17 
40.77 
39.31 
38.73 
38.47 
38.36 
38.32 
38.32 
38,32 
38.34 
38.65 

a 

351.8 
305.5 
271.5 
241.9 
214.7 
189.0 
164.4 
140.4 
117.0 

—60,6 

380.1 
322.8 
281.8 
245.8 
212.4 
180.4 
194.4 
137.2 
119.1 

89.3 
—139.6 

b 

56.1 
195.5 
351.1 
526.0 
721.1 
936,6 

1,172.6 
1,429.2 
1,706.5 
4,667.7 

50.2 
175.4 
325.1 
502.7 
708.4 
941.9 

1,203.3 
1,315.5 
1,492.2 
1,808.8 
5,327.3 

* best fit. 
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samples are available, so that random errors play an insignificant role, c 
has always been greater than zero. 

The effect of varying c-values on the standard deviation, s, and on the 
parameters a, and b, is shown in Table 3. 

It can be seen that a variation in c within relatively wide limits has little 
effect on s, but if c -» 0, the effect an s becomes of practical importance. 
A variation in c has, however, a great effect on the parameters a and b so 
that it is not possible to use the estimated value of a as an estimate of the 
basic density of the earlywood, as the best fit of c will always be subject 
to some error. For example, the results from Christianssaede gives an 
a-value of 137.2 kg/m 3 for the best fit of c, which is an unacceptably low 
value of the earlywood density. This does not make the regression analysis 
unsuitable for the purpose of fitting the best curve through the observations, 
but it indicates that care must be taken with values computed from the 
equation which lies outside the range of the observations. The a-value is 
such an example, as it is an estimate of the basic density for an infinitely 
wide annual ring. 

Unacceptable values of a can be avoided by selecting the best fit of c 
within certain limits of a. For example, if it is known that the basic density 
of the earlywood varies between 200 and 300 kg/m3 , the equation can be 
solved within these limits. 

With fewer samples, low values of a are often found as the samples 
may be non representative. Low values of a are also found in materials with 
a rather narrow range of ring width, which could explain the low a-value 
in the Christianssaede experiment, where the ring width varied from 0.5— 
4.5 mm, with one exception of x = 5.8 mm. In the Ålholm experiment, on 
the other hand, the r ing width varied from 0.2 mm to 7.1 mm with several 
ring widths greater than 6 mm. Thus, in order to secure a good estimate 
of a, the widest annual rings should be kept separate when cutting up the 
increment cores or sticks. The wider the annual ring, the better will be the 
estimate of the horizontal asymptote. 

The best estimate of the average earlywood density may be obtained by 
determining the density from approximately 25 to 50 earlywood samples. 
Stratified sampling techniques should be employed to ensure representative 
samples from all ring width classes. 

In order to compare two or more regression curves, the value of c must 
be the same for the equations compared. For example, if the two regression 
curves in table 3 are compared, the value of c could be fixed at 2.6, the mean 
of the best fits for the two regression curves. The two materials could also 
be pooled and a common c-value computed. It is of course a drawback that 
the c-value has to be fixed when the identities of two or more populations 
are tested. On the other hand, even a relatively great change in c has little 
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effect on the .standard, deviation, so that the necessary adjustment of c is 
not considered to be of great importance to the regression analysis. 

When the three results in tables 1 and 3 are compared, it is striking 
to see how similar the parameters a and b are for the same c-values, cf. 
Table 4. 

T a b l e 4. Comparison of the parameters a and b for c = 2.0. 

Locality and 
nos. of trees s a b 

Tokkekøb, 36.4 221.1 752.4 
15 trees 
Ålholm, 34.2 2,14.7 721.1 
120 trees 

Christianssaede, 38.5 212.4 708.4 
100 trees 

The striking similarity is found not only for c = 2.0, but also for other 
values of c. It would be interesting to follow the variation of the parameters 
in future investigations, especially t he variation of c, as it would be of great 
help if c could be fixed for Nor'way spruce populations. The value of c 
may vary from tree to tree, but it may be a constant for Norway spruce 
populations. 

The above mentioned regression curve is characteristic for Norway 
spruce. However, earlier investigations show that sonne Abies, Larix, Pinus, 
and Pseudotsuga species have a distinctly different curvature, as the density 
at first increases and attains a maximum for a ring width about 1 mm and 
then decreases again -with increasing r ing width (Kollimann 1951), so that 
it resembles the curve in Figure 8. 

If the interrelation between latewood width and ring width is assumed 
to be a logarithmic function of the type 

z = ue~c/x (11) 

the graph in Figure 9 is obtained, which is only slightly different from the 
graph in figure 3. If (11) is substituted in (2) we get 

RE (x — ue ~c/x) + Rhue~c/X 

R = 
x 

or 
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R.Basic density 
Rumtæthed 

Ring w id th 
A rrings bredde 

F i g . 8. R b e - c / x 

z.Latewood w id th 
Hestvedsbredde 

Ring width 
Årringsbredde 

F i g . 9. z = ue = u e ~ c / x 
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, -c/x 
R = a + — (12) 

x 

which gives a graph with a maximum for x = c, and with the horizontal 
asymptote R = a, of. Figure 8. 

The form of the regression curve in Figure 8 seems to be in accordance 
with the earlier findings, summarized by Kollmann (I.e.), and might be 
useful to some research workers. As yet, equation (12) has not been tested 
using actual data. 

ACKNOWLEDGEMENT 

In the main, the present paper is a result of investigations carried out 
while I have been in receipt of a Senior Research Fellowslxip granted by 
The Royal Veterinary and Agricultural University, Copenhagen. Assistance 
has been granted by Statens jordbrugs- og veterinærvidenskabelige Forsk­
ningsråd. I am grateful to both institutions for their support. 

I also wish to acknowledge the help of Peter Brun Madsen in preparing 
the computer programmes, and of T. Lynge Madsen in processing most of 
the data, and to thank the latter and Yrsa Andersen for performing the 
laboratory work. 

SUMMARY 
The aim of this study is to derive a model which describes the causal inter­

relation between basic density and ring width, in accordance with empirical 
knowledge. 

Based on the knowledge of the average basic density of the early wood and 
latewood in relation to ring number, and the interrelation between latewood 
width and ring width, two regression equations are derived of which the follow­
ing is preferred: 

R = a + , (x > 0) 
x+c 

where R = the basic density, x = the ring width, and a, b, and c are three posi­
tive constants. The equation represents a hyperbola with the horizontal asymptote 
R = a, and a theoretical, vertical asymptote x = —c. 

When the above regression equation was tested using samples from 240 Nor­
way spruce, the form of the hyperbola was found to be in accordance with 
practical experience. The correlation coefficients found were high, about 0.8. 
Furthermore, the model is easy to use, as it can be transformed to a straight line 
R = a + bx', where x' = l / ( x + c), so that the theory of linear regression may 
be applied. 
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DANSK RESUME 

Formålet med nærværende arbejde er at udlede en formel, der beskriver den 
kausale sammenhæng mellem rumtæthed* og årringsbredde i overensstemmelse 
med den foreliggende empiriske viden. 

Ud fra kendskabet til vårveddets og høstveddets rumtæthedsvariation med 
årringsnummer (retgnet fra marven) og sammenhængen mellem høstvedsbredde 
og årr ingsbredde er to regressionsligninger udledt, af hvilke den følgende er 
foretrukket: 

R = « + ^-r^-, (x>0) 

hvor R = rumtætheden, x = årr ingsbredden og a, b og c tre positive konstanter. 
Ligningen fremstiller en hyperbel med asymptoterne y — a og x = —c. 

Reigressionsligningen er testet på boreprøver fra 240 t ræer fra Ålholm og 
Christianssæde skovdistrikter, og de beregnede hyperbler fundet i overensstem­
melse med erfaringsmaterialet. De fundne korrelationskoefficienter er relativt 
høje, omkring 0.8 mod normalt 0.65 ved lineær regressionsanalyse af tilsvarende 
materialer. Hyperbelfunktionen er desuden nem at arbejde med, idet den kan 
transformeres til en ret linie R = a + bx', hvor x' = l/(x + c ) , hvorefter lineær 
regressionsanalyse kan anvendes. Der er udviklet et komputerprogram, der op­
søger den værdi af c, som giver den mindste spredning omkring regressionslinien. 
Denne værdi er omkring 2, 
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