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BY
DAVID FOG axp ARNE JENSEN

§ 1. INTRODUCTION

Investments in forests being long-term investments, mistakes
may be made in the dispositions over fairly long periods before
the direct economic consequences are discovered, and when this
happens, it will often be too late — and at any rate a lengthy and
expensive affair — to try to remedy matters. For this reason the
measuring of trees was developed rather early for the purpose
of following the growth of the individual forests as closely as
possible.

When a tree has been felled, it will, with a suitable division
into sections, in principle not be difficuit to determine its volume
with sufficient accuracy. But a tree on the root is a different
problem, and this is what we are faced with in practice when
estimating or studying the increment of a stand. For the deter-
mination of the volume of a standing tree, the diameter of the
tree (measured at the customary height above the ground) and
its height in the first place present themselves. From these fi-
gures, however, the volume of the tree cannot be directly cal-
culated; it must be taken into consideration that the tree cannot
be regarded as a cylinder, but tapers towards the top (and widens
a little at its basal part, below the height of measurement). On
this account the volume of the cylinder (the product of the height
and the basal area) must be reduced to a certain extent, i. e. it
must be multiplied by a figure less than 1, and in this way we
arrive at the important and generally applied concept of form
factor, the term now current for this reduction.

The term form factor can be traced back to the term “Reduk-
tionszahl” (reduction figure) introduced by Joh. Christ. Paul-
sen in his paper “Uber die richtigste Art der Berechnung des
Zuwachses an ganzen Holzbestinden (1800). The term “Form-
zahl” (form factor) was first used by Koénig (1813) and has
since then become firmly established; but the term ‘“reduction
figure” is in so far more adequate, as we are here actually con-
cerned with a reduction, not with a determination of the form.

Det forstlige Forsegsveesen. XXI. 2. 27, dec. 1952. 1
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The original reason for introducing the term form factor
(reduction figure) must have been the hope that the form factor
was — or might with sufficient approximation be regarded as —
a constant characteristic of each species of tree. The form factor
might then be determined once and for all by accurate measure-
ment of a comparatively small number of trees, and in all subse-
quent determinations of volume the product of height and basal
area merely had to be multiplied by the known form factor.

However, conditions are not so simple as this, and attempts
have therefore been made to establish a more convenient theory
by assuming that the form factor is variable and dependent on
certain measured — or measurable — quantities, and the most
natural would then be to regard the form factor as a function
of the height and the diameter, which, at any rate, have to be
measured. The practical consequence of this was the preparation
of tables with entry by means of height and diameter. The first
tables of this kind were the Bavarian volume tables from 1846.
The largest and now most frequently employed tables were
prepared after the foundation of the “Verein deutscher forstlicher
Versuchsanstalten” (1872); here the volume tables prepared by
Grundner and Schwappach should especially be mentioned.
Such tables give the very volume desired, but in the calculation
of the tables the form factors were used, because it was found
easier to make an adjustment of the almost equally large form
factors than of the highly varying volume figures.

It turned out, however, that even in the form mentioned here
the theory did not quite come up to what was expected of it, and
this gradually became all the more obvious, as the demand for
accuracy increased. Various attempts were then made to improve
the method for the determination of the form factor and the
volume by including other measurable quantities. As one of the
first attempts in this direction we may mention Pressler’s
“Richthéhemethode” (1855), according to which the form factor
is determined by fixing that place on the lrunk ‘(Richthéhe)
where the diameter equals half the diameter at a height of 1.3 m
(international height of measurement). This method has not,
presumably, been much employed. More interest attaches to the
measurement of a form quotient, i. e. the ratio between the dia-
meters at two specified points of the trunk. Such a form quotient,
determined as the ratio between the diameter at the middle of
the trunk (half the height of the tree) and the diameter at 1.3 m,
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is included in Schiffel’s tables (Norway spruce 1899, larch
1903, pine 1907). Tor Jonson uses in his tables (pine and Nor-
way spruce, 1910—11) the “absolute form quotient”, i. e. the ratio
between the diameter at the middle of the piece of trunk above
1.3 m and the diameter at 1.3 m. The crown ratio has also heen
used; from quite recent years we may mention Niasslund, who
has both prepared tables with entry by means of height and dia-
meter alone (pine, Norway spruce, birch) and tables with entry
by height, diameter, and crown ratio (pine, Norway spruce).
Related to the measurement of the crown ratio is Tor Jonson’s
determination of the “form point”, i. e. the point where the wind
attacks the crown. Furthermore the age has been employed, cer-
tain' tables having a division into age classes; this applies e. g. to
some of Grundner’s and Schwappach’s tables.

In our view, at any rate as far as the deciduous trees are con-
cerned, no great progress has been made by the above-mentioned
methods. The reason is presumably that the form factor and, ac-
cordingly, the volume further depend on a number of local con-
ditions as, for instance, race, treatment, soil, and climate, in a
way which has not been taken into account above, and which it
will be very expensive to take into account to any great extent for
each single stand.

As a consequence of what has been stated above there might
be reason to submit the volume determination of a stand to a
renewed careful scrutiny. The present paper is the result of a
cooperation with the Danish Forest Experiment Station, and
is based on a mathematical treatment of an experimental material
which the Station has placed at our disposal. Mr. H. A. Henrik-
sen, head of the measuring department of the Station, let us
benefit by his expert knowlidge in the field of forestry by giving
us valuable assistance throughout our work. We think that in
the very varied material we have found certain general features
which render possible a decisive improvement of the results. Our
considerations have resulted in the establishment, on the basis
of the material available, of a volume table with entry by means
of diameter and height, which may be used for the determination
of the total volume of a stand in the following two fundamentally
different ways:

1) All diameters and heights are measured. The volume of
each individual tree is found by means of the table. In this way
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the total volume is determined with a standard error of ca. 5
per cent.

2) All the diameters and heights are measured, and the indi-
vidual volumes are determined as under 1). In addition direct
determination of volume is made on a few trees which give a
natural expression of the variation in the stand (thus, for in-
stance, not “mean trees” or trees of poor quality), and the values
thus found are compared with the table values. On this basis a
correction factor is computed, which may be used for the stand
in question, and is an expression of the individual features of
the place. If the total volume found by means of the table is cor-
rected in agreement with this, the accuracy is increased, and the
risk of a systematic error is considerably reduced. If, for instance,
such a direct determination of volume is made for nine trees, a
reduction of the standard error to 2.3 per cent may be counted
upon. If the determination is made for four trees only, the stan-
dard error will be 3.5 per cent. (cf. § 8).

If not all the heights are measured, but by some adjustment
method approximate values are found for a number of heights
on the basis of measured diameters, the above-mentioned ac-
curacy will, of course, be somewhat reduced. If not all the dia-
meters are measured, either, but only a representative section
of the forest instead of the whole is considered, the uncertainty
of the result will be further increased. These latter problems will
not be dealt with in the present paper.

§ 2. DIRECT CONTEMPLATION OF THE EXPERIMENTAL
MATERIAL

The material used is derived from the Danish beech stands,
and falls naturally into three groups. Group I consists of measu-
rements carried out by the Forest Experimental Station in 17
stands, distributed over the various parts of the country and
consisting of from 10 to 38 trees'), while groups II and III com-

1) In Report 149 mentioned as the “main material”. As to the
character of this material and the method by which it was measured,
see further Report 149, pp. 4—9 and 20-—24. Either all the trees of a
stand were used, or the employed trees were selected in such a way as
to give a fairly complete representation of the stand spectrum. Slightly
in conflict with this principle, a part of the sample tree material from
sample plot M was included for representative reasons. Even though
the 31 trees measured in this sample plot are not of precisely the same
age, it appears that the results are not noticeably influenced by the
inclusion or omission of this material.
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prise measurements from a number of stands, 11 and 8 respecti-
vely, from the Bregentved and Sorg forest districts, consisting of
from 6 to 15 trees?).

Below the forestry denotions are given for all employed stands,
as well as the abbreviations used hereafter.

Forestry denotion (in danish) abbreviation
Group I.

Prgveflade (sample plot) M
Prgveflade ( — —) S
Esrum distrikt, afdeling 281
Esrum distrikt, afdeling 307
Frederiksdal distrikt, Storskoven
Aastrup distrikt, afdeling 61
Bonderup distrikt, Merlgse afdeling 17
Bonderup distrikt, Merlgse afdeling 19
Bonderup distrikt, Merlgse afdeling 21
Giesegaard distrikt, Maglebjerg skov
2. Sorg distrikt, Lille Bggeskov, afd. 82 B
Petersgaard distrikt, Stensby skov
Brahetrolleborg distrikt, Storskoven
Aarhus distrikt, Skaade skov, afdeling 95, 1
Aarhus distrikt, Skaade skov, afdeling 95, 2
Boller distrikt, Randskoven, afdeling 6—7
Stensballe distrikt, Keerskoven, afdeling 29

R R

L ~1 S Ot

11
12
13
14
15
16

Lo I e I B B B T e T e T T T B T T I
Nel

Group Il (Bregentved skovdistrikt)

Boholte skov, afdeling V 16 I 1
Stubbekrogen, afdeling XXV 1 m 2
Ganneskov, afdeling XXII 69 I 3
Bgrsted skov, afdeling XVI 20 I 4
Ganneskov, afdeling XXII 36 I 5
Karise Hestehave, afdeling XXI 3 II 6
Boelskov, afdeling XXIIT 33 nm 7
Boelskov, afdeling XXIIT 10 Imr s
Grevindeskoven, afdeling VI 96 Im 9
Haslev Orned, afdeling 1 47 II 10
Boelskov, afdeling XXIII 59 a IT 11

2) The measurements of groups II and III were carried out as
“sample tree measurements” collected by the district administration
as parts of more comprehensive valuation work.
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Forestry denotion (in danish) abbreviation
Group Il (Sorg skovdistrikt)
Sgskoven, afdeling 17 I 1
Sgskoven, afdeling 10 A I 2
Vindelbro skov, afdeling 30 B I 3
Alsted skov, afdeling 1 A I 4
Alsted skov, afdeling 25 B nr 5
Alsted skov, afdeling 50 B I 6
Vesterskov, afdeling 69 A I 7
Vesterskov, afdeling 101 A Inr 38

For each tree i.a. the following measuremenls were available:

1) The trunk diameter, d,, measured at a height of 1.3 m
above the ground.

2) The trunk diameters d(“, dyg -, dyg measured at
heights above 1.3 m, which constitute '/, /.., ... ., /10
respectively, of that part of the trunk which is above the
height of 1.3 m.

3) The height of the tree h.

4) The form factor of the trunk f.

5) The branch volume G.

6) The total volume T.

The distinction between trunk volume and branch volume
arises automatically with the measuring technique employed, but
is only of little interest in the treatment of the material, this
distinction being very ill-defined in nature.

In order to gain a thorough insight into such a material it will
be natural, as a beginning, to compare the stated quantities in
pairs; this is done most clearly by a graphic representation. A
number of diagrams were drawn; as an example we will mention
in more detail those in which the total volume T is plotted against
the height h and the diameter d,, respectively. In figs. 1—2 this
is shown for the stand I 15, and in figs. 3—4 analogously for the
stand 1 7. The total volume T increases everywhere with increas-
ing h and d, and the absolute differences between the trees are
greater for the large trees than for the small ones. All this is well
known and quite natural.

Now, experience has shown that as regards growth problems
it is most frequently the case that the logarithms of the quanti-
ties under consideration vary according to simpler laws than the

4



(7] 99
T T T T T T T T T T T
vor  Aarhus 2 (I15) / Volume Aarhus 2 (I 15)
'(4,()7 m . N 36m’as » /
Las 1 |
/
7/
L3z ]
L8 E 1
Log 1 |
L20 1 |
..]6 N
12 1 1
o8 1 i
height gbh.
0m * 25 30 35 40 45 50 em
Fig. 2.
; T . ; ; . : : . : :
Merlose afd 17 (I 7) Merlose afd 17 (I 7)
volume, m’ volume m*
F28 T B Log ¢rs ]
24 A L 24 1
20 . . 20 . .
16 - l-16 B
12 R 12 4
ros 1 08 g
04 L
height 04 dbh. (ay
22 24 26 28 30 3m” 40 em
Fig. 3.




100 [8]
/ 7
Aarhus 2 (I15) ), Aarhus 2 (I15)
1+log vol. 16 1*{:’_9[”";’}/‘ )
15 siog Ty
15
14
14
+13
13
324
r12
H?
11
10
10
ro9
09 p
08 |
F08
I log height o trog d
132 136 140 144 148 aest) 13 16 15 16 17 log.dbh.
Fig. 5. Fig. 6.
Merlose afd 17 (I 7) Merlese afd 17 (I 7,
1+log vol. !
1+ log vol Lgotreiogn J
L 13 trereg 1) . |
rff J
H2 E
10
11 |
09 ]
Ho ]
r08 J
+09 |
a7 J
08 ]
06
r07 ]
05 J
06 1
Clrog hs Clog dy)
132 136 140 144 148 log height 13 16 15 16 log dbh

Fig. 7.



{93 101

quantities themselves. In the present case, if we take the loga-
rithms of the measurements and plot them against each other,
the pictures will assume a different character (see figs. 5—8).
(The same result may be obtained by using the original measure-
ments in connection with double-logarithmic paper.) From this
it appears that the pictures, which were previously curved, have
now been straightened out, and the former funnel-shaped ap-
pearance has changed in such a way that the figure has almost
a constant breadth. The connections between the logarithmic
measurements are accordingly linear; further, the variation of
log T is independent of the size of log h and log d,. This latter
fact may also be expressed by saying that the percentage variation
of T is independent of the size of h and d,.
According to figs. 5 and 7 we then have with approximation

(1 log T = a -+ plogh,

where ¢ and g are constants, and analogously for log T’s depen-
dence on log d, (figs. 6 and 8). The approximations, however, are
not equally good, thus, for instance, the deviations from the
straight line will be seen to be greater in figs. 5 and 7 than in
figs. 6 and 8. The diameters are accordingly more suitable than
the heights for a determination of the volume of the tfrees.

Now, it would be natural to expect that the approximation
would be materially improved if we proceed to consider T’s si-
multaneous dependence on two or more of the aforementioned
quantities and assume log T to be a linear expression in the loga-
rithms of these quantities. If, for instance, we are concerned with
T’s dependence on h and d,, we will put

(2) log T = g - g log h 4 ylog d,,

where ¢, # and » are constants (and ¢ and g have not, probably,
the same values as in (1)). Formula (2) is equivalent to

(3) T — 10¢ h¥ @7,

but (2) is more suitable for practical calculations.

Above we have dealt with the dependence of the total volume
on other factors, not with the form factor’s dependence on these.
At to this it may in the first place be said that it is the volume
which it is desired to determine, whereas the form factor is me-
rely an auxiliary quantity. It is decisive, however, that if we pass



102 [10]

on to logarithmic measurements, the justification of the use of
form factor vanishes entirely. For from

4) T — % dg? h F,
where F is the total form factor, we get
(3) logT:log%+2log d, + logh + log F,
which combined with (2) gives
(6) logF = (a—log-il—r') + (f— 1D logh + (»—2) log d,.

Thus, if T satisfies an equation of type (2), the same applies to F,
and conversely; there is therefore no reason to abandon the
quantity T which actually is to be determined.

It will further be seen that the original theory with a constant
F corresponds to the fixing, beforehand, in (3) and (2),0of g =1
and y = 2. It is obvious that when g and y are set free and it is
attempted to determine them on the basis of the observations,
formula (2) will lend itself considerably more adaptable to these.

§ 3. OUTLINE OF THE FURTHER PROCEDURE

Through the considerations set forth above, including the
accompanying figures, it is made clear that log T may approxi-
matively be expressed linearly by the logarithms of various other
measurable quantities, as for instanee h and d,. We will now
especially consider the connection between T and h, expressed
by § 2, (1). Geometrically we may say that the “points of obser-
vation” group around a certain line, the regression line. As a
measure of the goodness of the approximation we have the so-
called standard deviation (mean error), which is a concentrated
expression of the vertical deviations of the points from the line
and accordingly also of the differences between the actual total
volumes and those that would be obtained by measuring the
heights and then employing the regression line.

Similarly, we may give a geometrie interpretation of § 2, (2)
by adopting a system of coordinates in space. The points are
distributed around the regression plane determined by § 2, (2),
and, as above, we may speak of a standard deviation as an expres-
sion of the deviations of the points from the plane and accordingly
of the differences between the actual total volumes and those
that may be calculated by measuring h and d, and using the plane.
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If we look at T’s simultaneous dependence on three or more
quantities, the geometric interpretation fails; but the correspon-
ding apparatus of calculation functions equally well, as will be
seen later.

Let us consider more closely T’s simultaneous dependence on
h and d, that is § 2, (2). A calculative treatment of this must aim
at determining, for each stand considered, a regression plane and
a corresponding standard deviation. Imagining that this has been
done, we shall find a total of 17 4 11 -} 8 == 36 regression planes
and just as many standard deviations. If the method is to be of
practical use, the results found must have certain features in
common.

In the first place, it is desirable that the standard deviations
found should be so nearly equal that the differences can be ex-
plained in a natural way as due to chance. This, indeed, turns
out, in the main, though not entirely, to be the case. Keeping in
this preliminary description to essentials, we will proceed on the
hypothesis that the true standard deviations (for which those
found are approximations) are equal, that is, that there exists a
common measure of accuracy which is valid for all stands. If this
did not hold good — at any rate approximately — the mathema-
tical theory would become materially complicated.

As regards the regression planes found, it would, of course,
be best if they all coincided, apart from minor deviations which
might be regarded as random. On closer examination this proves
not to be the case, and consequently it will not be possible to
prepare volume tables where by means of heights and diameters
we can find the total volume of a stand, only encumbered with
random errors, the percentage amount of which is negligible when
the number of trees is large.

Now, if this cannot be achieved, it might be imagined that the
planes were mutually parallel except for minor random devia-
tions in direction. Something of the kind actually. proves to be the
case, and it is this which renders possible the fairly simple con-
clusion which will be the result of the present paper. Thus, to
two different stands there will generally correspond two parallel
regression planes, situated at different heights or, as we shall
say, at different “levels”. This means that if we have two trees
each from its particular stand, but with a common h and a com-
mon d,, the tree from the stand with the highest level will always



104 [12]

(except for minor random differences) contain a certain higher
percentage of volume than the other, and this excess percentage
will be independent of the size of h and d,.

In this way the situation already suggested in § 1 will arise:
We prepare once for all, on the basis of a large material, a table
with entry from the height h and the diameter d, for the deter-
mination of the total volume, corresponding to a certain mean
level. If this table is used generally, after measurement of heights
and diameters, one runs the risk of committing a systematic error
corresponding to the difference of level. The resulting standard
deviation may, as previously mentioned, be estimated at 5 per
cent. In unfavourable cases one may therefore, by such a use of
the table, risk an error of 10 per cent or a little more. If this is
consistent with the degree of accuracy required, the method is
applicable. In the opposite case the said measurements may be
supplemented by direct determinations of volume for some few
trees; in this way we may find an approximate value for the
difference in level and in the main eliminate the systematic error
(cf. § 8).

It should be added that in the above it has not been considered
whether the differences in level ascertained in the material are
due to topographical conditions or to errors in the mode of se-
lection. For such an investigation the available material was
unsuitable.

In the following sections the considerations and calculations
which have led to the above-mentioned results will be dealt with
in more detail.

§ 4. COMPARISON OF TWO STANDS

We will consider the above-mentioned equation § 2, (2), viz.

(1) log T = a + glogh + » log d,,
and give the calculations and results for the aforementioned
stand I 15. For the other stand, I 7, we will merely give the re-
sults, found by the same method, and the two sets of results will
then be subjected to a critical comparison. We will commence by
offering some explanatory remarks on the mathematical symbols
and formulas employed?).

1) See A. Hald, Statistiske Metoder, Kbhvn, 1948, p. 500 {f. and the
accompanying tables. The designations, however, are not quite the
same.
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For the sake of brevity we put log h = x, log d, == y, and
log T = z, so that (1) becomes

(2) Z=q+ X+ Yy

The number of trees is called n. A bar over a letter denotes the
forming of an average (mean), thus e. g.
N e 1

X = :—_-Exi‘
n n

It proves convenient to transform (2) into the form

(3) z=q 4+ f x—Xx) + y (y—¥).
The coefficients g and y (but not ¢) here have the same meaning
asin (2).

For certain frequently occurring sums of squares and of pro-
ducts we introduce abbreviations, as for instance

SKy = ¥(xq—x)?, SP,y=X(x—x)(yi—y) 1)

These quantities are computed from the formulas
) ) B : 1 ¢
SK, = Zx2 — o (Ex1)% SPyy = 2 x5y; — Fz x; 2 y;.

From the available numerical material approximate values
(“estimates”) are sought for the theoretical quantities ¢, g, and »
introduced in (3) and for the standard deviation ¢ from the
regression plane?).

For ¢ we have the estimate z; the estimates b and ¢ for g
and y are found from the equations

@ b SKy + ¢ SP,y = SP,,
b SPyy-- ¢ SKy = SP,,.

Then we form
(5) q? = SK, — b SP, — ¢ SPy,,

which has f = n — 3 “degrees of freedom”, and the estimate s
for the standard deviation ¢ is then determined by

1) By Hald termed SAKx and SAPxy.
2) See Hald, p. 500 ff.
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L A 1
(6) Y n—3’ )

Table 1.
Calculation of means, square sums, and product sums
for the stand I 15.

I m3 X l z
tree no: n | @ T log h logy do | log T
1 26.8 33.3 1.463 1.428 1.522 ’ 0.157
2 27.3 39.9 2313 1.463 1.601 } 0.370
3 27.0 37.6 2.097 1.431 1575 0322
4 27.6 415 2.464 1.441 1618 | 0.392
5 25.4 34.4 1.409 1.405 1537 | 0.149
6 28.6 35.9 1.764 1.456 1.555 ‘ 0.246
7 24.7 380 | 1.857 | 1393 | 1580 | 0.269
8 256 | 400 2.135 1.408 1602 | 0329 |
9 21.9 27.6 0.901 1.340 | 1.441 | —0.045 }
10 28.6 37.7 1.957 1.456 1.576 0.202 |
11 27.0 427 2.521 1.431 1.630 0.402
12 30.7 52.5 3.957 1.487 1.720 0.597
13 22,2 33.4 1.163 | 1.346 1.524 0.066
14 25.0 33.3 1.451 1.398 1.522 0.162
15 25.3 35.2 1.512 1.403 1.547 0.180
16 26.3 40.2 1.974 1.420 1.604 0.295
17 21.6 25.7 0.674 1.334 1410 |—0.171
18 26.1 40.3 1.969 1.417 1.605 0.294
!
sum | 25430 | 28.169 | 4.306
X = 1.4128 y = 1.5649 7z = 0.2392
SKx = 0.028297 SKy = 0.083279 SKz = 0.523129
SPxy = 0.039571 SPxz = 0.106308 SPy. = 0.204695

The subscripts 1 and 2 are used below to indicate that the
quantities have reference to I 15 and I 7, respectively.

1) The method here described for the determination of b, ¢, 2
(and accordingly s2) is easy to explain and very useful in many cases;
it is intended to serve as a basis for the preliminary description of
the calculations given in this and the following two sections. In the
calculations as actually carried out, however, another method was
used, which presents various advantages when it is desired to vary
the number of variables included. This method is described in § 7.
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According to table 1, which contains the calculations for I 15,
7, = 0,2392.
The equations (4) for the determination of b, and ¢, become

0.028297 b, -+ 0.039571 ¢, = 0.106308
0.039571 b, -} 0.083279 ¢, = 0.204695.

From this we obtain

b, = 0.952643, ¢, == 2.005281.

From (5) we find q,2 = 0.011384, and as f; — 18—3 = 15, we
get from (6>

5, = 0:000759, s, == 0.0275.
As to I 7 we proceed in a quite similar way. Here we get
7, = —0.0823,
and the equations (4) become

0.031012 b, -+ 0.013142 ¢, == 0.057760
0.013142 b, -+ 0.128624 ¢, = 0.272993.

From these we find
b, = 1.006674, ¢, = 2.019553.

Further we get q,2 = 0.039604, and as f, = 38—3 = 35,
s,2 = 0.001132, s, = 0.0336.

These two sets of results will now be compared. According to
the statements in § 3, the comparison falls into three parts:
A) An investigation as to whether the difference between s,
and s, may be of random nature). We form
g2 0.001132
72: i—:w: 1.49.
VT2 T T0.000759
From a table of the v2-distribution it will be seen that with 35
and 15 degrees of freedom for numerator and denominator,
V25975 = 2.61; this corresponds to a two-sided 95 % limit, with
2% % cut off on either side. As the v* found is even substantially

1) See Hald, pp. 277—278 and table VII. Tables of a similar kind
are also found i. a. in R. A. Fisher, Statistical Methods for Research
Workers; a table of v29.975, however, is not found in the latter work.

Det forstlige Forsegsveaesen. XXI. 2. 27. deec. 1952. 2
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smaller than 2.61, s, and s, may quite well be regarded as two
estimates of a common standard deviation. These are combined
in the following way: We form

(1) @=q?+ @ = 0.050988, f=f, -+ f,=50.
The value s of the common standard deviation is then obtained
from

2
(8) §2 — qT = 0.001020, s — 0.0319.

B) An investigation as to whether the deviation in direction
of the two planes may be random, that is, whether the difference
between the pairs of figures (b,, ¢,) and (b,, ¢,) may be of a
random origint). We will tentatively assume this, and can then
determine the common set (b, ¢) from the equations

{b Y SKy -} ¢ X SP,, = X SP,,

9
) b XSSP+ ¢ 3 SK, = 3 SP,,,

where e. g. ¥ SK, indicates the sum of the values for SK,, corres-
ponding to the two stands under consideration, and analogously
for the other expressions.

We then need the quantity

("2 =3 (b,—b)2 SK, + 2 3 (b,—b) (¢,—¢) SPyy -+

10
(10) X(e,—c) SKy,  (r=1,2).

For the computation of q’2 the easiest way is to use a transforma-
tion, so that first we find

(11) q2 = ¥ SK, —b ¥ SP,,—c X SP,,
and then make use of the fact that

(12) q? = q%— g2
As 2 has two degrees of freedom, s’ , determined by

(13) §'2 = % q’2,
will be a new value for the standard deviation, independent of s
in (8) and based on the hypothesis of parallel regression planes.
The test of the correctness of the hypothesis therefore consists in

a comparison of s and s’.

1) Cf. Hald, pp. 447—48, where, however, it is a comparison of
two regression lines that is made.



[17] 109

In the present numerical example the equations (9) become

0.059309 b + 0.052713 ¢ == 0.164068
0.052713 b + 0.211903 ¢ = 0.477688,

which have the solutions
b =0.979267, ¢ = 2.010675.
From (11) we then fin ?12 == 0.051060, and then by (12) and (13)
q? = 0.000072, s’z = 0.000036.

An erroneous hypothesis will, according to (10), give too high a
value for s’?, and since here s’ < s2, the hypothesis can be main-
tained. As a consequence hereof the values for b and ¢ found
above may be used in the regression planes for both stands.

C) The last link of the investigations consists in ascertaining
whether the difference in level between the two parallel regres-
sion planes may be supposed to have arisen by chance. We write
the equations of the two planes

” {A=5+bm—gﬂww—i>
Zy = 75 + b (X — %) + ¢ (¥ — y2)-
From these we find the difference in level
(15)  d=Z;—Zy= 7, — 25— b (x; — Xg) — € (y1 — ¥3)-

This has the mean 0, and its variance (square of standard devia-
tion) can be shown to be

Iy gz (L g
(16) var {d} = o2 <n1 + n2+ )
where

= (§1 _§2>-2 2 SKy—2 &1—’?2) 6’1‘?2) 2 SPyy + (?1 —§2)2 2 SKy
and
4 = 2 SKy 2 SKy — (2 SPyy)2
If we put ' ! '
1 1 ¢
(19) ottty =k

will, d and s being independent, be t-distributed!) with

sk
1) See Hald, p. 285 ff. and table IV.
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f, 4+ f, = n, -+n, — 6 degrees of freedom, and by this means
the hypothesis about coinciding regression planes can be tested.

In the example, (15) gives by calculation d = 0.060. Further
we find by (17) and (18) /

@ = 0.0009598, 4 = 0.00978909,
after which (19) gives k = 0.17993, so that
t= - d_ = 4.43.
s [’k

From a t-table, it will be seen that with n, - n, — 6 = 50 degrees
of freedom, tjg4;; = 2.01; this corresponds to a two-sided symme-
trical 95 % limitation. As the t-value found far exceeds 2.01, the
hypothesis of a common level must absolutely be rejected.

§5. COMPARISON OF AN ARBITRARY NUMBER
OF STANDS

In order to gain a general view of the material, we might
imagine a comparison between all the stands by twos, made in
the same way as described in § 4 for 1 15 and I 7. This is a very
slow method, and not the best suited, either. A general view is
obtained by considering the whole material — or, at any rate,
suitable larger parts of it — together, as described below.

To this must be added another point. Above we have examined
the dependence of the total volume on the height h and the dia-
meter d; but, as already mentioned in the introduction, we may
also imagine the total volume to be dependent on other quantities,
and it is, of course, important to include precisely those quantities
which may be supposed to influence materially the total volume.
As such quantities we have — in addition to h and d, — chosen

the trunk quotient do

, in which the Forest Experiment Station
0

took a special interest, further the trunk form factor f and the
branch volume G. We have carried out a regression for log T

as a function of log h, log d,, log %‘1 1), log f, and log G, and as

0
a function of only some of these. For each such set of variables

we have computed the standard deviation. When the elimination

1) Replacement of log (%4 by log do.4 would have led to the same
result (cf. § 2, the end).
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of a variable has resulted in a substantial increase of the standard
deviation, we have taken it to mean that this variable was of
value in the determination of the total volume. The calculations
show that actually only h and d, were of importance in that
respect.

In the following presentation of the theory we will consider
the case mentioned in § 4, where z = log T is regarded as a func-
tion of the two variables x = log h and y = log d,. On the whole
it will be immediately obvious how the theory and formulas are
altered by passing from two to more — or fewer — variables, and
moreover for guidance the discription will be supplemented with
brief comments on this point.

Let there be a total of k stands, containing n,, n,, .., n, trees
respectively. For each of these stands we form, as in § 4, the

‘means x, y, z, the sum of squares SK,, SK;, SK,, and the product
sums SP,y, SP,,, SPy,. (If z is a function of m variables, we get
m -+ 1 means, m -+ 1 square sums, and % m (m -+ 1) product
sums).

For each stand we then form') the equations § 4, (4), and b
and ¢ are found; for the k stands they are denoted (b, ¢,), (b,, ¢c,),
. s (bk, Ck).

Then, by means of § 4, (5), we form the quantities ¢,2, q,2 . .,
qi2 with the degrees of freedom f, = n, — 3, f, = n, — 3, ..,
fx = ny — 3, respectively, and

) @ = qe + g? + - @

with f = X f, degrees of freedom. (Wilh m variables, § 4, (4) is
replaced by m equations with m unknown, the number of the
substraction terms in § 4, (5) is altered from 2 to m, and the
degree of freedom for 2.is n, — m — 1).

From § 4, (6) we form the quantities $12, Sp%, .., s

We now carry out the investigation according to the same
classification A—C as is used in § 4 by comparison of the two
stands; but within these subdivisions partially new and extended
methods will be employed.

A) An investigation as to whether the differences between
52, 852, . ., sx? may be of random origin. We form

2 2::_(12_
(2) s =

1) Cf. the footnote on p. [14].
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a kind of mean value of the k deviation squares found, and if we
use Bartlett’s test!), according to which

K 6.2

(3) 22 = ____-){ f. In Y 2)

_

approximatively is y2-distributed with k—1 degrees of freedom.

With x and y denoting, as before log h and log d,, the calcu-
lation, applied in the test, for the 17 stands in group I will appear
from the following table 2, which is prepared on the basis of the
calculations made for table 1 and the 16 tables analogous with
that table.

Table 2.
To use by testing if the 17 stands of group I have a common
standard deviation.

stand %‘;ﬂzgg br Cr qe? fr sr2 i log sr®
11, 31 07782 | 21844 10022972 | 28 |0.000820 | 0.9138—4°
1 2| 38 01725 19917 | 23172 | 35 662 | 08208 -
13 2 0.8843 | 22098 | 20252 | 24 844 09264 |
I 4| 18 0.9526 | 20053 | 11384 | 15 759 | 0.8803 |
15 23 1.0739 | 19263 | 14488 | 20 724 0.8597
I 6 35 0.8434 | 21412 | 36985 | 32 1156 | 1.0629
17, 28 03502 | 22624 | 26212 | 25 1048 © 1.0203
I 8| 10 |—01845 23383 | 02309 | 7 330} 0.5185
19| 12 0.5647 | 21999 | 13195 9 1466 | 1.1661
110 23 0.8424 | 20213 | 20497 | 20 1475 11688
111 2 0.8464 | 1.9877 | 25560 | 22 1162 | 1.0652
12| 38 1.0067 | 20196 | 39604 @ 35 1132 | 1.0538
113 30 0.8667 | 20405 | 45970 | 27 1703 | 1.2312
114 27 0.7937 | 18797 | 25754 | 24 1073 | 1.0306
115 33 0.4651 | 21649 | 27390 | 30 913 ' 0.9604
116, 14 0.8300 | 20779 | 10829 | 11 984 . 0.9930
117 3t 0.8206 | 20231 | 27402 | 28 979 | 0.9908—4
443 0.402975 | 392 |0.001028 | 1.0120 —4
= nr @2 | Xf s2 1 log s2? |

1) Hald, p. 246.
2) In denotes natural logarithm.
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The s? corresponding to (2) becomes

o — 0402975 561095,
392

We then get
2= (CEf)Ins? — X (filns?2) = % [(2 1) log s — X (f: log 5%,

where M = log e = 0.43429. Accordingly

1 6,9652
w2 — ‘ _ _= —
1= g (396.7040 — 380.7388) = >0

= 16.0.

From a y*-table*) it will be seen that with 17—1 = 16 degrees
of freedom 4245 = 26.3, corresponding to a one-sided 95 per cent
limitation. The 42 found, which is considerably less than this
value, is thus perfectly consistent with the hypothesis of a com-
mon standard deviation for all the 17 regressions, and, according-
ly, this is assumed to be satisfied in the following. Corresponding
calculations for Bregentved and Sorg give analogous resulis.

B) An investigation as to whether the regression planes may
be regarded as parallel, that is, whether the differences between
the pairs of figures (b,, ¢,), (b,, ¢,), . ., (by, ¢, ) may be of random
character. The procedure is almost as in § 4. The formulas § 4,
(9)—(12) may be used again, only each ZX-symbol should be
interpreted as a summation of k terms, r running from 1 to k.
The only real difference will be that 2, which previously had
two degrees of freedom, now gets 2 (k—1) degrees of freedom,
so that § 4, (13) must be replaced by

. q®
4 §2 = =Ty
The hypothesis of the parallelism of the planes is then tested by
a comparison between the two independent estimates s’* and s*
for the variance.

For the stands in group I considered above k = 17. From

table 1 and the tables analogous with it we get

3 SK, = 0.344608, X SK, = 2.203872, X SK,= 11.719617
3 SP,y, = 0.485676, X SP,, = 1.289269, X SPy,= 4.951325.

1) Cf. Hald, table V.
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Hence the equations § 4, (9) become

0.344608 b 4 0.485676 c = 1.289269
0.485676 b | 2.203872 ¢ = 4.951325,

which have the solutions
(5) b = 0.833942 c = 2.062868.
By means of § 4, (11) and (12) we then find
q? = 0.430512, q? = 0.027537,
and (4) gives

0.27537
2 = ————— = 0.000861.
s 39 0.00086
As s’ < s%, nothing prevents us from maintaining the hypothesis.
As common values for the inclinations of the 17 regression planes
we then use the values of b and ¢ found in (5), and as an im-

proved estimate of the variance we take
- q? + q2 @ 0430512
- (m—-3k)+4+2(k—1) n—k-—2 424

We will then compute the standard errors m;, and m, of the
b and ¢ found. Employing the designations from § 4, (9), we get?)

s? = 0.001015.

(6) my, = l/2 SKy ‘S, mg = = SK, s,
A A
where
(7) 4 =3 SK, - 2 SKy — (2 SPyy)2

Applied to the present example this gives 7 == 0.523591 and then
(8) my;, = 0.0654, m, = 0.0258.

For Bregentved and Sorg, also, it appears that the hypothesis
of parallel regression planes can be maintained.

C) An investigation as to whether the parallel regression
planes may be assumed to have a common level. As we have al-
ready ascertained that the levels for I 15 and I 7 are different,
the object of the present investigation is to ascertain, whether
stands normally have a common level, and the result previously

1) Cf. Hald, p. 503.
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found was something exceptional for the two stands in question.
Here we consider the k “mean points” (x,, y,, z,), (X,, ¥, Z,),
.» (X, yx, ) and try whether, with sufficient approximation,

they lie in a plane which is parallel to the others. We then need
symbols of the form '

%= T SKe — X0, (e — %)% SPry = ¥ (v (Fr—Y).
3n,
x is the weighted mean for x,, X,, .., X,, the weights being the

numbers n, of trees in the individual stands; x is then also the
total mean of all the x’s. SK; and SP;y are formed on the basis
of the individual means x, and y,, similarly to sums of squares
and sums of products in § 4, though with the figures n, added
as coefficients (weights).

The equations corresponding to § 4, (4) here become
@) - { b’ SKx + ¢’ SPxy = SPx;
b’ SPyy + ¢’ SKy = SPy; |
From these we find, by analogy with § 4, (5),
(10) q"? = SKz — b’ SPx; — ¢’ SP5;

with k—3 degrees of freedom, and from this we gel the value s |
independent of the previous ones, for the standard deviation
determined by

3’2
(11) sr=1

s’ is then to be compared with s.
For carrying out the calculations it is necessary to tabulate all

the means X, y;, z, from which (using the weights n,) we
derive the sums of squares and products included in (9) and (10).
For group I such a table gives

SKy = 0.7882, SKy = 4.0981,  SK; = 24.6253,
SPs7 = 1.4018, SP5; = 3.6970, SPj; = 9.9749.

The equations (9) then become

0.7882 b’ + 1.4018 ¢’ = 3.6970
1.4018 b’ = 4.0981 ¢’ == 9.9749,

whence
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b’ = 0.92315 ¢ = 2.11825.
From (10) we then get ¢”2 = 0.0831, accordingly

872 = 00831 0.005936.
14

Hence

,  87%  0.005936

Ve = ?~fm_—5.77.

The use of a v2-table shows that with 14 and 392 degrees of free-
dom in the numerator and denominator, respectively, v2j g5 = 1.72,
corresponding to a one-sided 95 per cent limitation. As the v2
found is much larger than this, the hypothesis of a common level
must be absolutely rejected.

For the Bregentved and Sorg districts, also, the calculations
show that the hypothesis of o common level cannot be main-
tained. However, the differences which bring about the rejection,
notably as regards Bregentved, are not nearly as large as for

group L.

§ 6. COMPILATION OF THE WHOLE MATERIAL

In the preceding section we have mentioned separately the
treatment of the three main parts of the material, group I, Bre-
gentved, and Sorg. Within each of these main parts certain
characteristic facts have appeared, which, after elimination of
random variations, may be expressed as follows:

A) The standard deviations from the regression planes are

equal.

B) The regression planes are parallel.

C) The regression planes do not coincide, the levels being

different.

We will now examine whether conditions A) and B) may be
extended so as to be valid for the whole material. In the follow-
ing table we then compare the results found in § 5 for group I
with the corresponding results for Bregentved and Sorg:

Table 3.
b c s2 ) my, m,
Group 1 0.8339 2.0629 0.001015 0.0319 0.0654  0.0258

Bregentved 0.4153  2.1439  0.000625 0.0250 0.1270  0.0545
Sorg 0.8519  1.9853  0.000679  0.0261 0.1474  0.0592
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It will be seen that the standard deviation s for the sample
plots differs rather considerably from the other two, and Bart-
lett’s test, as applied in § 5, shows that this difference cannot be
explained as accidental. The s-values for Bregentved and Sorg,
however, are almost equal, and, as mentioned in § 4 under A),
a v2-test shows that the small difference may quite well be ex-
plained as due to chance. The assumption of a common standard
deviation from the regression planes may thus be maintained by
comparison between Bregentved and Sorg, but not if the com-
parison is extended to group I, also.

This result is in natural agreement with the fact that in the
Bregentved and Sorg districts the selection of trees must be
assumed to have taken place according to almost the same prin-
ciples, whereas group I holds a more exceptional position. For,
while the observations from the former two districts were collee-
ted by the district administration and were the result of the selec-
tion of sample trees, the material of group I was gathered by the
Forest Experimental Station and is derived from clean cutting
as well as from selection within the stands, but in the latter case
the whole stand spectrum is represented (cf. Medd. 149, p. 5 ff.).

We will now proceed to examine how it is with the parallelism
of the regression planes, that is to say, we will endeavour to find
out whether the differences between the b-values as well as be-
tween the c-values in table 3 may be of random character. A first
glance shows that the c-values are fairly equal, whereas the b-
values for Bregentved differ a good deal from the others.

We will then, as shown on p. 16, first work the two s2-values
for Bregentved and Sorg into a common value; this becomes

s? = 0.000648.
The ratio between s? for group 1 and that found above is

0.001015

— = 1.57.
0.000648

We therefore reduce the sums of squares and products of group I
by dividing them by 1.57. The values for b and c are not altered
by this; but the variance s? is reduced in the said proportion and
thus becomes equal to the common vaiue for Bregentved and
Sorg. This is the same as using the reciprocal values of the
variances as weights on the sums of squares and products for
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Bregentved-Sorg and group I. The three main parts can now be
compared, and a vi-test, similar to that mentioned in § 5 under
B), shows that it will be justifiable to regard the three b-values,
as well as the three c-values, as equal. The total result then
becomes

Table 4.
b c s? ) my, mg
Group I 0.001015  0.0319
Bregentved- } 0.7636  2.0640 0.0540  0.0217
Sorg 0.000648  0.0255

§7. THE CALCULATION METHOD EMPLOYED

In the preceding sections the calculations have been carried
out for the case that log T is regarded as a function of log h and
log d,. It was mentioned, however, that it was useful to include
several independent variables in the investigations in order to
find such, if any, which in addition to h and d, were of essential
importance for the determination of the total volume. In this way
the work of calculation is considerably increased, and it is there-
fore of importance to employ standard methods which reduce the
work as much as possible. We have decided to use Cholesky’s
method?).

We will describe this method applied to the case previously
considered, where log T was determined as a function of log h
and log d,; but in order to facilitate the possibility of transition
to more variables, the independent variables log h and log d, will
be denoted x, and x,, while the dependent variable log T will be
denoted y. As regards the sums of squares and products, also, we
introduce a minor alteration, thus instead of e.g. SK,, SP,,,
and SP , we write SK,, SP,,, and SP,,. Finally, we write a, and
a, instead of b and c. The equations § 4, (4) then become

ja, SK, + a, SP,, = SP,

@ |2 SP,, + a, SK, = SP

2y

and § 4, (5) becomes
(2) q* = SKy —a, SP,, — a, SP

2y+

1) Bull. géod. 2, 1924, Cf. also Henry Jensen, An Attempt at a Sy-
stematic Classification of some Methods for the Solution of Normal
Equations. Geod. Inst. Medd. 18, 1942.
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According to the method previously mentioned, (1) is first solved
as to the a’s, after which these, by insertion in (2), give the value
for q2. In the method actually employed (and described below)
this sequence is reversed. ‘

The calculations are most easily carried out in association
with a matrix equation

b;;y 0 0 by, by, dy SK; SPy, SPyy ) Ky
(3) Jbyy by 0 0 Dby dy L =8P, SK, SP,y 1k,

d, d, d; 0 0 dj 1SP1y SP,y SKy | ks,

Ky Ky Ky
where the b’s and d’s on the left hand side are auxiliary quanti-
ties, which are to be found, while the square sums and the pro-
duct sums must be imagined to be calculated from the experimen-
tal material, as previously mentioned. The quantities k,, k,, k,
denote the sums of the rows of the matrix to the right; they are
easily computed. Analogously, k’,, k’,, k', denote the sums of the
columns of the first matrix to the left; they are used for checking
the calculations.

Equation (3) should be interpreted so that the product sum
of the elements in the ptt row of Matrix 1 and the elements in the
qth column of Matrix 2 shall be equal to the element of Matrix 3
situated in the pth row and the qtt column (“row-column multi-
plication”). Thus we get

Row 1 multiplied by column 1: bz, =SK,
— 2 — - — 1 b,, b,, =SP
4) 12 V11 12
— 3 — - — 1 d, b,, =SP,
— 4 — - — 1 kK, b,=k,.

From these equations we determine b,,, b,,, d,, and k,, and we
check whether

(5) b, + b, +d, = I,
"Then we form
Row 2 multiplied by column 2:  b,,* - b = SK,
(6) ——— 3 i - B 2: d1 b12 + d2 b22 = Ssz
— 4 — - 2. Kb,LtK,b,—k,

Hence we find b,,, d,, and k’,, and we check whetler
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(7) b,, 4 d, =K’,.
Finally we form
() Row 3 multiplied by column 3: d?+4dz2+d;? = SK,
— 4 — - — 3 K,d, +K,d,+ K, d, =k,

Hence d, and k’,, and it is checked whether
9 d, = k’,.
Now the following rule will apply: The quantities

SKy = d2 + d2 +d2  SKy—dz?=d? | d2
SKy — d,? — d,? = d,?

constitute the square sum q2 for, respectively, the y’s alone, y as
a function of x,, and y as a function of x, and x,. If we divide by
the corresponding number of degrees of freedom (n—1, n — 2,
and n — 3, the number of trees being n), we get the corresponding
variances s?, the square roots of which are the standard devia-
tions s.

If we then wish to determine the regression coefficients a,
and a, in (1), this may most easily be done by means of the ma-
trix equation

b,y b a d
(10) 11 12 l t _ i ,
{ 0 by, ] A d,
which is equivalent to the two equations

by a; 4 by a, = d;

(11)
by a, = d,.

To illustrate the method we again make the calculations for
1 15. Here the equation (3) according to previously found sums
of squares and products becomes

b, 0 0] by by, dy}  0.028297 0.039571 0.10630810.174176

(12){b;5 by 0 110 by dy1==10.039571 0.083279 0.204695:0.327545
d; dy d l 0 0 d, 0.106308 0.204695 0.5231290.834132
kg k’y K5

The first set of equations (4) gives

b,, = 0.168217, b,, = 0.235238, d, =0.631969, k’, —1.035424,
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and it will be seen that the test equation (5) is satisfied. The next
set of equations (6) then gives
b,, = 0.167159, d, = 0.335201, k’, = 0.502360,
and it is seen that (7) is satisfied. Finally, the equations (8) give
d, = 0.106698, k', = 0.106699,

so that the last checking is in order, also. We then have

q? 0.5623129 0.123744 0.011384
f 17 16 15
s? 0.030772 0.007734 0.000759
s 0.1754 0.0879 0.0275.

The standard deviation for the y’s alone is accordingly 0.1754, by
regression with regard to x, it is reduced to 0.0879, and if further
X, is added, it drops right down to 0.0275 (cf. § 4, p. 15).

The regression coefficients a, and a, are now determined from
(11), which becomes

0.168217 a, 4 0.235238 a, = 0.631969

(13) 0.167159 a, == 0.335201.

Hence
a, = 0.952639, a, = 2.005282

in accordance with the previous caleulations.

The matrix equation (3) may be written in a much more con-
densed form. Thus we may omit the corner of the first matrix on
the left hand side which consists of zeros only, as well as the
whole second matrix. Further, we may omit the corner below,
left, of the matrix on the right hand side, so that the product sums
are only written once. We then get the following diagram:

e : \'
| b, | SK, SPy SPy| Kk, |
b bm | SKy Syl k|
|
|
\

d, d, d 151{y 1;3‘

Ky K k'g‘

In the above example of the calculation it appears as follows:
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1 2 y sum

0.168217| 0.028207 0.039571 0.106308 0.174176%
0.235238 (0.167159 | 0.083279 0204695 0327545,
0.631969 0.335201 0.106696 | 0.523129 0.834132

|
1.035424 0.502360 0.106696]

[30]

As an example of the calculation in case of more independent
variables we give the diagram and the results obtained from it

for log T as a function of log h, log d,, log %‘5 , and log G, like-
0

wise for I 15:

1 2 3 4 y

0.1682171 0.028297 0.039571 —0.003377 0.111155 0.106308
0.235238 0.167159 0.083279 —0.013445 0.244843  0.204695
—0.020075 —0.052181  0.111185 0.015488 —0.050222 —0.026248
0.660783 0.534830 —0.081385 0.385016] 0.877538 0.628939

0.631969 0.335201 0.035346 0.090764 0.043555) 0.523129

sum

0.281954
0.558943
—0.077804
1.812253

1.436823

1.676133 0.985007 0.065144 0.475781 0.043555!

Hence:

qz 0523129 0.123744 0.011384  0.010135  0.001897

f 17 16 15 14

13

sz 0.030772  0.007734 0.000759  0.000724  0.000146
s 01754 0.0879 0.0275 0.0269 0.0121

The first diagram, which only comprises x, and x,, enlers as
part of the second, and the former results are likewise included
in the latter. Equations (13), also, may be deduced from the last
diagram given. As before, it will be seen that the introduction of
the variables x, and x, considerably reduces the standard devia-
tion. The inclusion of x, leaves it almost unaltered; if, finally, x,
is added, it decreases again, but to a small extent, only.

In table 5 a series of standard deviations are given for all the
stands in group I. The first column from the left corresponds to
the total variation of y = log T, the next one the regression with
regard to x, = log h, and the following ones to a successive ad-
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dition of x, = log d,, x, = log %]‘i , and x, == log G as variables.
0
Thus the last column gives the standard deviation of a regression

in which y is a function of all the four variables mentioned.

Table 5.
Standard deviations for the 17 stands of group I by regression with
regard to several variables.

stand | X1 X1 Xg Xy X2 X3 ’ X3 X2 X3 Xg
I 1 0.2267 0.1298 0.0286 0.0272 | 0.0130 ,
I 2 1067 953 257 220 149 |
I 3 1501 1094 291 204 157
1 4 1754 879 275 269 121
I 5 1435 1088 269 260 189
I 6 1459 948 340 306 294
1 7 2011 1258 324 247 151
I 8 1703 1198 182 91 91
19 1666 1472 383 406 118
110 2184 1811 384 318 21
I 2131 16144 341 249 174
I12 1324 1226 336 171 137
113 1604 1322 413 259 147
114 1160 1073 398 315 242
I15 1112 1013 302 245 163
I16 2386 1418 314 214 120
117 1624 1490 313 302 183
total ) | 0.1639 1 0.1274 0.0319 I 0.0272 ] 0.0176

Thus, what was said about I 15 as to the variability of the
standard deviation with the addition of the various variables, ap-
plies to all the stands. Corresponding tables prepared' for the Bre-
gentved and Sorg districts show analogous conditions.

§8. VOLUME DETERMINATION FOR A STAND

We shall now mention how, on the basis of the above, we may
arrive at a volume determination for a stand. Corresponding to
each of the k = 17 + 11 -+ 8 = 36 stands considered above we
have found a regression plane of the form

Det forstlige Forsegsviesen. XXI. 2. 27. dec. 1952, 3
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(0 Z=z+bx—x) +cly—y),
where x, y, and z denote the means of the x-, y-, and z-values,
respectively, for the particular stand. The k planes may be
regarded as parallel, and their common direction may be fixed at
the values mentioned at the end of § 6, viz.

(2) b = 0.7636, ¢ = 2.0640.

However, the planes lie at different levels. These levels can be
compared if in all the planes (1) we insert one and the same
point (x, y) and compute the corresponding Z-values, Z,, Z,, .. .,
Zy . As the common point we have chosen below (?f, ?), where X

and y denote the total means of all the x’s, respectively all the y’s,
in all the stands. The corresponding Z-values (levels) are listed
in table 6.

As a mean of the 17 levels in group I we have Z = §DT979£
== 0.2117. The corresponding plane of type (1) is

(3) Z=Z-+Db(x—x)+c(y—7y.

Here x, y, and Z stand for the logarithms of a tree’s diameter d,
its height h, and its total volums T (determined by d, and h).
This dependence is tabulated in the volume table given on p. [39]
—[44], where when entering with d, and h we may find the
corresponding T. The values of d, and h are indicated with an
interval of z cm and % m, respectively.

We shall now see how this volume table can be employed to
find the total volume for a particular stand. Let us suppose that
the diameter and height have been measured for all the trees in
the stand. If the regression plane (1) for the stand corresponds

precisely to the selected mean level Z, the volume table may be
directly used, and from the measured diameters and heights give
the corresponding volumes. If, however, as must normally be
assumed, the level of the stand differs from Z, a correction must
be made corresponding to a verlical displacement of the plane
(3). In this way all the Z-values receive the same increase (or
reduction), and since Z = log T, the corresponding T-values will
all be increased by the same percentages, p. The figure p can
be determined in the following way:

We imagine that a small number, n, of trees are felled. The
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Table 6.
Z-values (levels) for all 36 stands.
o Group II .
Group 1 Z; (Bregentved) Zi
11 0.2260 II 1 0.2221
I 2 0.2370 I 2 0.2162
I 3 0.2268 II 3 0.1995
I 4 0.2383 I 4 0.1977
I 5 0.1904 II 5 0.1935
1 6 0.2265 I 6 0.2069
I 7 0.2191 I 7 0.2178
I 8 0.2165 II 8 0.1940
I 9 0.2149 il 9 | 0.2017
110 0.1793 M1 01816
In 0.1869 II 11 } 0.2016
I 12 0.1877 5
2.
113 0.2222 sum | 2252
114 0.2005 mean 0.2030
115 0.2166
_ Group 111 7
I16 0.2015 (Sore) i
117 0.2090 11 1 0.1839
sum 3.5992 i 2 02118
- IIT 3 0.1636
mean 0.2117 1l 4 0.1487
! III 5 0.1809
7.2367
total mean ~5= = 0.2010 11 6 0.1546
II1 7 I 0.1872
IIT 8 0.1742
sum 1.4049
mean 0.1756

actual total volumes of these are measured and denoted t,, t,, .. .,
t,. Let the volume table for the total volumes of the same trees
give the values T,, T,, ..., T,. If the first-mentioned volumes
exceed the calculated ones by p,, p,, . . .» P per cent, respectively,
p becomes the average '

1
(4) p=;<pl+p2+-.+pn>-

If then, by consulting the volume table, the total volume is deter-
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mined for all the standing trees one at a time, we merely have
to add all the total volumes thus found and increase the result
by p per cent. In this way the total volume of the whole stand is
found, corrected with regard to the level of the stand.

For the accuracy of this volume T the following formula ap-
plies:

(5) mp = 2.30 - T ‘/K + 5

where s indicates the previously found standard deviation from
the regression plane, which may approximately be put at 0.03,
while n, as mentioned above, is the number of trees felled whose
volume has been directly determined, and N is the number of
standing trees in the stand. The first term under the radical sign
is an expression of the inaccuracy of the determination of level
and may be reduced by increasing n; the second term covers the
random biological variation between the trees, and if N is large,
we may disregard this element, so that (5) is simplified to

(6) my == 230 - T. —
V/'n

If, for example, we put n = 9, we get from this

my = 2.30 - T- 9—?,

that is, the mean error of T is 2.3 per cent. Similarly, for n = 4
we get a mean error of 3.5 per cent.
It is an assumptlon for the validity of (5) and (6) that the

means x and y for the n felled trees shall approximately be equal
to the corresponding quantities for the whole forest; if not, the
inaccuracy will be increased.

Even without the said direct volume determination for some
few trees, i. e. by measurement of diameters and heights alone,
‘we may, on the basis outlined above, form an estimate of the total
volume of a particular stand, but the accuracy will then be less.

Since in such case we cannot determine any correction per
cent p, we use the volume table as it is, that is, for want of better
knowledge we assume that the level of the stand is the mean level.
An estimation of the accuracy is then obtained by considering the

k = 36 levels Z,, Z,, ..., Z , with the average Z = 0.2010 and

6
calculating their mean error r from the formula
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1
= »7Z.2 )2
2 (Zi—Zy =4 k@L)_

7 2: _—
(7) r kK—1 k—1

2
We then replace = by r2 as the first term under the radical sign
n
in (5) and get
)
(8) mr = 2.30 T |/ 1%+ N
which for large values of N is simplified to

(9 my == 2.30 T r.

From table 6 we find r? = 0.0004744, accordingly r = 0.022, so
that (9) becomes

my = 2.30 T . 0.022 = 0.051 T,

that is to say, the standard error of T is 5 per cent.

Consequently, here is a limit to the accuracy, below which we
cannot get by the usual employment of volume tables with entry
by means of diameter and height. If, however, we undertake a
direct determination of the volume for some few trees, the level
of the stand will thereby be approximately established, and in the
way described above, by using a correction per cent, more accu-
rate results will be obtained, after examination of e. g. 9 trees, as
mentioned above, with a standard error of 2.3 per cent.

For further application of the table see report 172.

As to the practical use of the tables the following remarks
should be added regarding interpolation in the table. If the mea-
sured height and diameter are not stated directly in the table, it
is necessary to interpolate. This may be done as shown in the
example below:

Height 25.2 m, diameter 44.9 cm.
25.0 and 44.0 correspond to the wood volume 2.308 m?
Increase in height: 2/, (2.343 —2.308) = 0.014 -
— - diam. : 9/, (2.417-—2.308) = 0.098 -

Result 2.420 m3
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§ 9. FORKED TREES

In the calculation of the table, forked trees beginning at dy4
or farther down have not been included. The limit was put at
dog, an investigation having shown that forked trees from dg;
and upwards have no discernible deviation in level from unforked
trees.

For the other forked trees, the level is increasing — the
greater the deeper the fork is located. To obtain a rule from
which to start, the correction factor was computed for the forked
trees as well as for the other trees in a number of stands (see the
subjoined table):

Stand Forked trees Other trees
Brahetrolleborg ...... 1.035 1.026
Boller ............... 1.110 1.051
Giesegaard .......... 0.996 0.947
Esrum 281 .......... 1.014 1.014
Frederiksdal ......... 1.038 0.928
Merlgse 21 .......... 1.022 0.998
Petersgaard ........... 1.038 1.015
Stensballe ............ 1.096 0.997
Esrum 307 .......... 1.061 1.016
Sorg ....... ... ..., 1.046 0.986
Aastrup .............. 1.007 0.951

From this it appears that a reasonable estimate for the cor-
rection factor of the forked trees may be obtained by adding 0.05
to the correction factor for the other trees. If the percentage of
forked trees in the stand is known, i. e. the percentage of trees in
the stand which are forked from d,4 or lower down, the correc-
tion factor can be calculated for the whole stand as the correction
factor already found plus 0.05 times p/100, where p is the per-
centage of forked trees. This gives

Forked tree percent Addition to the correction factor
5 0.0025
10 0.0050
15 0.0075
20 0.0100

25 0.0125



SAMMENDRAG.

Almindelig Massetabel for Bgg i Danmark.

I det foregiende er der meddelt nogle resultater af en undersggelse
vedrgrende bggens vedmasse. Det benyttede materiale er stillet til ra-
dighed af Statens forstlige Forsggsveesen, hvor afdelingsleder H. A,
Henriksen under hele udarbejdelsen har ydet forfatterne veerdifuld
forstsagkyndig bistand. Materialet stammer fra Danmarks bggebevoks-
ninger og falder naturligt i tre grupper. Gruppe I besiar af malinger
udfgrt af Forsggsveesenet pa& 17 bevoksninger, fordelt over landets
forskellige dele og bestiende af fra 10 til 38 trzeer, medens gruppe 1I
og III omfatter malinger fra en rsekke bevoksninger, henholdsvis 11
og 8, fra Bregentved og Sorg skovdistrikter, bestdende af fra 6 til 15
treeer. Materialerne i gruppe II og III er tilvejebragt af distriktsadmi-
nistrationerne.

Treerne i gruppe I er malt efter Forsggsvesenets seedvanlige me-
tode til maling af prgvetraeer. Volumen af stammedelen under 1,3 m
er bestemt ved mal p& midten af fire lige store sektioner, medens vo-
lumen af stammedelen over 1,3 m er bestemt ved endeflademal pa 10
lige store sektioner. Grenemassen er bestemt ved klupning i 1 m-sek-
tioner, og kvasmesengden (diam. under 3 cm) ved vejning. Trzeerne i
gruppe II og III er malt pé en lidt anden méade. Den vasentlige forskel
bestar i, at ogsd stammedelen over 1,3 m er méalt i 1 eller 2 m-sektioner.

Hovedvaegten af undersggelsen ligger i bestemmelse og under-
sggelse af regressionsplaner mellem hgjde, diameter og vedmasse for
hver af de undersggte bevoksninger.

Ved overgang til logaritmisk mal for disse stgrrelser viser det sig,
at regressionsfladerne, som i naturligt mal er krumme, sendres til pla-
ner (sml. fig. 18, s. [7]—[8]). Yderligere opnar man, at spredningen
omkring regressionsplanerne bliver den samme for store og sma trzeer,
medens spredningen i naturligt mal er stgrst for de store trzer.

Det er pavist, at der intet er i vejen for at betragte de enkelte iagt-
tagelsers spredning omkring planerne som ens for de forskellige be-
voksninger i gruppe I (s. [19]-—[21]). Derimod er spredningen mindre
for bevoksningerne i gruppe II og III. Denne forskel er sandsynligvis
ikke reel, men kan formentlig henfgres til materialernes forskellige op-
rindelse og deraf fglgende forskellige beskaffenhed: Materialet i grup-
pe I, der er indsamlet af Forsggsvaxesenet, er dels fremkommet ved ren-
afdrift, dels ogsa ved udtagning i bevoksninger, men da saledes, at hele
bevoksningsspekiret er tilstrzebt reprzesenteret; det er da rimeligt, om
det indeholder flere forskellige typer end materialerne i gruppe II og
III, som er fremkommet ved prgvetrseudtagninger. I almindelighed
kan man (i logaritmisk mal) regne med en spredning s af de enkelte
iagttagelser omkring regressionsplanen pa 0,03; dette svarer for selve
vedmassen til ca. 7 %.

Det er endvidere undersggt, om man kan anse regressionsplanerne
for de forskellige bevoksninger for at veere parallelle. Dette spgrgsmal
besvares hekrezeftende (s. [217—[227, [25]-—[26]).
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Endelig er det pavist, at man ikke kan anse de forskellige bevoks-
ningers regressionsplaner for at veere sammenfaldende (s. [22]—[24]).
Man siger, at planerne har forskelligt niveau. Disse niveauer har en
spredning, der omsatl fra logaritmisk til naturligt mal belgber sig til
ca. 5 % af vedmassen.

Ud fra hele det foreliggende materiale er bestemt en regressions-
plan, hvis niveau er middelveerdien af de 17 niveauer i gruppe I, og
p& grundlag af denne er fremstillet en massetavle (s. [39]), der tjener
til. beregning af en bevoksnings vedmasse. Tavlen benyttes pa fglgende
maide: Fgrst bestemmes niveauet ved prgvetreemalinger, idet man sam-
menholder prgvetraeernes virkelige totalmasser ty, t2 ...., tn med de
masser Ti, Te, ...., Th, man finder i massetavlen ved indgang med
hgjde og diameter. Hvis de fgrstneevnie masser overgar de beregnede

med p1, P2, -..., Pn %, er middeltallet p = 1 (pr+p2+ .... +pn)
n

et udtryk for niveauet. Bestemmes herefter ved opslag i massetavlen
totalmassen for alle stdende treeer eet ad gangen, har man blot at ad-
dere de saledes fundne totalmasser og forgge resultatet med p %. Her-
ved er fundet bevoksningens samlede totalmasse, korrigeret under
hensyn til dens niveau.

Er som anfgrt antallet af prgvetrzeer n, medens det samlede antal
af treeer i bevoksningen er meget stort, bliver vedmassen bestemt ved

en middelfejl m, der tilnzermelsesvis er 230 l—/_g—_— % . Med benyttelse af
/n
veerdien s = 0,03 bliver altsd m = L Y. Males f. eks. 9 prgvetrzeer

(n = 9), fas mq = 2,3 %. I dette tilfzelde vil man altsd kunne péaregne
en ngjagtighed pa ca. 4,6 %, nir der regnes med 95 %’s sikkerheds-
interval.

Ogsd uden benyttelse af prgvetrzeer kan massetavlen anvendes.
Regner man da med, at bevoksningen har middelniveau, indfgrer man
en fejlkilde, der kan bevirke afvigelser pa indtil ca. 10 %.

En uddybning heraf samt andre metoder til anvendelse af masse-
tavlen omtales i beretning 172, s. [61] ff.
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Table 7 (report 171), Tabelle I (Bericht 172).

Total volume according to the general volume surface for beech

in Denmark.

[40]

Baumimnassen entsprechend der generellen Massenfldche fitr Buche in Ddnemark.

Totalmasser geeldende for den generelle masseflade for bgg i Danmark.

Height Diameter b.h. - Durchmesser - Diameter Helght
Hohe cm Hohe
Helde 5 3 1 8 5 lo 11 1o 13 1z |Beide
Total volume, cubic meter ~ Baummassen, fm ~ Totalmasse, n3

9 0,0119 0,0173 0,0238 0,0314 0,040l 0,0497 0,0606 0,0724 0,0855 0,0996] 9

9,5 |0,0124 0,0181 0,0248 0,0327 0,0417 0,0518 0,063l 0,0755 0,0891 0,104 9,5
lo 0,0129 0,0188 0,0258 0,0340 0,0434 0,0539 0,0656 0,0785 0,0927 0,108 | 1o
10,5 |o0,0134 ¢,0195 0,0268 0,0353 0,0450 0,0559 0,0681 0,0815 0,0961 0,112 | 10,5
11 90,0202 ©,0278 0,0366 ¢,0466 0,0580 0,0706 0,0845 ©,0996 0,116 | 11
11,5 0,0209 0,0287 0,0378 0,0482 0,0600 0,0730 0,0874 0,103 0,120 | 11,5
12 0,0216 0,0297 0,0391 0,0498 0,0619 0,0754 0,0902 0,106 0,124 | 12
12,5 0,0223 o,0306 0,0403 0,0514 0,0639 0,0778 0,0931 0,110 0,128 | 12,5
13 0,02%0 0,0315 0,0415 0,0530 0,0658 0,0802 0,0959 0,113 0,132 ] 13
13,5 0,0236 0,0324 0,0428 0,0545 0,0678 0,0825 0,0987 0,116 0,136 | 13,5
14 ©@,0243 0,0334 0,0440 0,0561 0,0697 ¢,0849 0,102 0,120 0,240 | 14
14,5 0,0250 0,0343 0,0451 0,0576 0,0716 0,0872 0,104 0,123 0,143 | 14,5
15 0,0256 0,0352 0,0463 0,059 o0,0734 0,0894 0,107 0,126 0,147 | 15
15,5 0,0262 0,0361 0,0475 0,0606 0,0753 0,0917 0,110 0,129 o,151 { 15,5
16 0,0269 0,0370 0,0487 0,0621 0,0771 0,0940 0,112 0,133 0,155 | 16
16,5 0,0275 06,0378 0,0498 0,0636 0,07%0 ©,0962 6,115 0,136 0,158 | 16,5
17 0,0387 0,050 0,0650 0,0808 0,0984 0,118 0,139 0,162 | 17
17,5 0,0396 0,0521 0,0665 0,0826 0,101 0,120 0,142 0,266 | 17,5
18 0,0404 0,0532 0,0679 0,0844 0,103 0,123 0,145 0,169 | 18
18,5 0,0413 0,0544 0,0694 0,0862 0,105 0,126 0,148 0,173 | 18,5
19 0,0555 0,0708 0,0879 0,107 0,128 0,151 0,176 | 19
19,5 0,0566 0,0722 0,0897 0,109 0,131 0,154 0,180 | 19,5
20 0,0736 0,094 o,111 0,133 0,157 0,283 | 20
20,5 0,0750 0,0932 0,114 0,136 0,160 0,187 | 20,5
21 ©,0949 0,126 0,138 0,163 0,19 | 21
21,5 0,0966 0,118 0,141 0,166 0,194 21,5
22 0,120 0,143 o,16% 0,197 22
22,5 0,122 0,146 0,172 0,201 22,5
23 0,148 0,175 0,204 | 23
23,5 0,151 0,178 0,207 | 23,5
24 0,153 0,181 0,211 { 24
24,5 0,156 0,184 0,214 24,5
25 0,186 0,217 25
25,5 0,189 0,221 | 25,5
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Table 7 (continued).
Tabelle I (Forlselzung).

133

Height

Diameter b.h.

- Durchmesser - Diameter
cm

Height
Hohe

16

17| 38 ]

19] 20 2] 20 25| 24|

25 |

26

Total

volume, cubic meter - Baummassen, fm - Totalmasse, m

Hgjde
m

0,131
0,137
0,142
0,148

0,155
0,161
0,167

0,153
0,158
0,163
0,169
0,174

0,179
0,184
0,189
0,194
0,199

0,204
0,209
0,213
0,218
0,223
0,227
0,232
0,237
0,241
0,246

0,173
0,179
0,185
0,191
0,197

0,203
0,208
0,214
0,220
0,225

0,231
0,236
0,242
0,247
0,252

0,202
0,208
0,215
0,221

0,228
0,234
0,241
0,247
0,253

0,259
0,266
0,272
0,278
0,284

0,290
0,296
0,302
0,308
0,313

0,226
6,233
0,240
0,248

0,255
0,262
0,269
0,276
0,283

0,290
0,297
0,304
0,311
0,317

0,324
0,331
0,337
0,344
0,350

0,251 0,277 0,305 €,334 0,365
0,259 0,286 0,315 0,346 0,377
0,267 0,295 0,325 0,356 0,389
29,275 0,304 0,335 0,367 0,401

0,283 0,313 0,345 0,378 0,413
0,291 0,322 0,355 0,389 0,424
0,299 0,331 0,364 0,399 0,436
0,307 ©,340 0,374 0,410 0,447
0,315 0,348 0,383 0,420 0,459

0,323 0,357 0,393 0,430 0,47¢
0,330 0,365 0,402 0,441 0,481
0,338 0,374 0,411 0,451 0,492
0,345 0,382 0,420 0,461 0,503
0,353 0,390 0,430 0,471 e,514

0,360 0,399 0,439 0,481 0,525
0,368 0,407 0,448 0,491 0,536
0,375 0,415 0,457 0,500 0,546
0,382 0,423 0,465 0,510 0,557
0,3%0 0,431 0,474 0,520 0,568

0,251
0,255
0,260
0,264
0,269

0,273
0,277
0,282
0,286
0,291

0,295
0,299
0,304
0,308
04312

0,316

0,319

0,398

0,403
0,409
0,414
0,419
0,425

0,357
0,363
0,370
0,376
0,383

0,389
0,395
0,402
0,408
0,414

0,420
0,426
0,433
0,439
0,445

0,451
0,457
0,463
0,469
0,475

0,397 0,439 0,483 0,530 0,578
0,404 0,447 0,492 0,539 0,589
0,411 0,455 0,501 0,549 0,599
0,418 0,463 0,509 0,558 0,610
0,426 0,471 0,518 0,568 0,620

0,433 0,478 0,527 0,577 0,630
0,440 0,486 0,535 0,586 0,640
0,447 0,494 0,%44 0,596 0,651
0,453 0,501 0,552 0,605 0,661
0,460 0,509 0,560 0,614 0,671

0,467 0,517 0,569 0,623 0,681
0,474 0,524 0,577 0,633 0,691
0,481l 0,532 0,585 0,642 0,703
0,488 0,539 0,593 0,651 0,711
0,495 0,547 0,602 0,660 0,721

0,501 0,554 0,610 0,669 0,730
0,508 0,562 0,618 0,678 0,740
0,515 0,569 0,626 0,686 0,750
0,521 0,576 o

0,528 0,584 0,643 0,704 0,769

0,744
0,756
0,768
0,780
0,791

0,803
0,815
0,827
0,838
0,850
03862
0,873
0,884
0,896
0,907

0,430
0,435

0,481
0,486
0,493
0,498

0,534 0,591 0,651 0,713 0,778
0,541 0,598 0,659 0,722 0,788
0,548 0,606 0,667 0,731 0,798
0,554 0,613 0,675 0,739 0,807
0,561 0,620 0,682 0,748 0,817

0,567 0,627 0,690 0,757 0,826

0,919
0,930
0,942
0,953
0,964

0,975
0,986
0,997
1,008
1,019

1,050
1,041
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Table 7 (continued).
Tabelle I (Fortsetzung).

[42]

Diameter b.h.

- Durchmesser - Diameter

cm

Height
Hohe

28

29

3o

31

32

33

34

35

36

37

38

Hgjde
m

Total

volume, cubic meter -

ssen, fm ~ Totalmasse, w3

0,567
0,583
0,599
0,615
0,630

0,707

0,722
0,737
0,751
0,766
0,781

0,610
0,627
0,644
0,661
0,678

0,695
0,712
0,727
0,744
0,760

0,776
0,732
0,808
0,823
0,839

0,654
0,672
0,691
0,703
0,727

0,745
0,762
0,780
0,797
0,815

0,832
0,849
0,866
0,883
0,900

0,139
0,759
0,778

0,797
0,816
0,835
0,853
0,872

0,8%0
0,909
0,927
0,945
0,963

0,789
0,809
0,831

0,851
0,871
0,891
0,911
0,931

0,951
0,970
0,990
1,009
1,028

0,841
0,863
0,885

0,907
0,928
0,950
0,971
0,992
1,013
1,034
1,054
1,075
1,095

0,894
0,918
0,941

0,964
0,988
1l,0l0
1,033
1,055

1,078

0,950
0,975
0,999

1,024
1,048
1,072
1,097
1,121

1,144
1,167
1,191
1,214
1,237

1,007
1,033
1,059

1,085
1,111
1,136
1,162
1,187

1,212
1,237
1,262
1,287
1,311

1,065
1,093
1,121

1,148
1,176
1,203
17230
1,256
1,283
1,309
1,335
1,361
1,387

14,5
15
15,5

0,795
0,810
0,824
0,838
0,852

0,866
0,880
0,89%4
0,908
0,922

0,936
0,950
0,963
0,977
0,991

1,004
1,017
1,0%0
1,044
1,057

0,855
0,870
0,886
0,901
0,916

0,931
0,946
0,962
0,976
0,991
1,007
1,021
1,035
1,051
1,065

1,079

0,916
0,933
0,950
0,366
0,982

0,999
1,015
1,031
1,047
1,063

1,079
1,094
1,110
1,126
1,141

1,157

0,981
0,999
1,016
1,034
1,052
1,069
1,086
1,104
1,121
1,138

1,155
1,172

1,047
1,066
1,085
1,104
1,123

1,141
1,160
1,179
1,196
1,215

1,287
1,305

1,323
1,340
1,358
1,375
1,393

1,115
1,136
1,156
1,176
1,196

1,216
1,236

1,431

1,455
1,479
1,503
1,525
1,549

1,572
1,595
1,618
1,641
1,664

1,687
1,709
1,731
1,754
1,776

38,5

1,070
1,084
1,097
1,110
1,323

1,187

1,200
1,213

1,410
1,428
1,445
1,462
1,479

-
-

\n
N
—

1,547
1,564

1,581

1,982
2,002

1,798
1,820
1,843
1,864
1,886

1,907
1,929
1,951
1,972
1’994
2,016
2,037
2,058
2,080
2,101

2,122

38,5
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Table 7 (coniinued).
Tabelle I (Fortsetzung).

Diameter b.h. - Durchmesser - Diameter
cm )

Height
Hohe

39] 40 41 42 43| 44 45] a6 ] ar] 48] 491 50

Hg jde

Total volume, cubic meter - Baummassen, fm - Totalmasse, 3

1,187-1,251 ,
1,218 1,284 1,351 1,420
1,249 1,316 1,385 1,456 1,529 1,602 1,678

1,280 1,349 1,419 1,492 1,566 1,642 1,720

1,311 1,381 1,453 1,528 1,603 1,681 1,761 1,842 1,926 2,011 2,100

1,340 1,413 1,486 1,563 1,640 1,719 1,801 1,884 1,970 2,057 2,147 2,239
1,371 1,444 1,520 1,598 1,677 1,758 1,842 1,927 2,015 2,103 2,196 2,289
1,400 1,476 1,552 1,632 1,713 1,796 1,881 1,968 2,058 2,149 2,243 2,339

1,4%¢ 1,567 1,586 1,667 1,750 1,834 1,921 2,0l0 2,102 2,195 2,291 2,389
1,459 1,5%8 1,618 1,701 1,785 1,872 1,961 2,051 2,145 2,240 2,337 2,437
1,489 1,569 1,650 1,735 1,821 1,909 2,000 2,092 2,188 2,285 2,384 2,486
1,518 1,599 1,683 1,769 1,857 1,946 2,039 2,133 2,231 2,329 2,432 2,535
1,546 1,629 1,715 1,803 1,892 1,984 2,078 2,174 2,273 2,373 2,477 2,587

1,575 1,660 1,747 1,836 1,927 2,020 2,116 2,214 2,315 2,417 2,524 2,631
1,604 1,690 1,779 1,869 1,962 2,057 2,155 2,255 2,357 2,461 2,569 2,679
1,632 1,720 1,810 1,903 1,997 2,094 2,193 2,295 2,400 2,505 2,615 2,726
1,661 1,750 1,841 1,936 2,032 2,13¢ 2,231 2,334 2,441 2,548 2,660 2,773
1,689 1,780 1,873 1,968 2,066 2,166 2,269 2,373 2,482 2,592 2,705 2,820

1,717 1,809 1,903 2,001 2,l00 2,201 2,%06 2,413 2,523 2,635 2,750 2,867
1,745 1,839 1,934 2,033 2,134 2,237 2,344 2,452 2,564 2,678 2,794 2,913
1,772 1,867 1,965 2,066 2,168 2,273 2,381 2,491 2,605 2,720 2,839 2,960
1,800 1,896 1,995 2,098 2,201 2,308 2,417 2,530 2,645 2,761 2,882 3,005
1,827 1,925 2,026 2,130 2,235 2,343 2,455 2,568 2,685 2,804 2,926 3,051

1,855 1,954 2,056 2,162 2,269 2,379 2,492 2,607 2,726 2,846 2,971 3,097
1,882 1,983 2,087 2,193 2,302 2,413 2,528 2,645 2,765 2,888 3,015 3,142
1,909 2,011 2,116 2,225 2,335 2,448 2,565 2,683 2,805 2,929 3,058 3,188
1,936 2,040 2,146 2,257 2,368 2,482 2,60l 2,721 2,845 2,971 3,lol 3,233
1,963 2,063 2,176 2,288 2,40l 2,517 2,637 2,759 2,884 3,012 3,144 3,278

1,99 2,097 2,206 2,319 2,434 2,551 2,673 2,796 2,924 3,054 3,187 3,323
2,016 2,124 2,235 2,%50 2,466 2,585 2,708 2,833 2,963 3,094
2,042 2,152 2,264 2,380 2,498 2,619 2,744 2,870 3,001 3,133
2,069 2,180 2,294 2,411 2,531 2,653 2,779 2,907 3,040 3,174
2,095 2,207 2,323 2,442 2,563 2,687 2,815 2,945 3,079

30,5

35,5

38,5
39
39,5

3
2,121 2,235 2,352 2,473 2,595 2,720 2,849 2,981 3,117 3
2,147 2,263 2,381 2,502 2,627 2,753 2,884 3,018 3,156 3
2,174 2,290 2,410 2,534 2,659 2,787 2,920 3,055 3,194 3
2,199 2,317 2,439 2,563 2,690 2,820 2,955 3,091 3,232 3
2,225 2,344 2,467 2,593 2,722 2,853 2,989 3,127 3,270 3,412

2,250 2,371 2,496 2,623 2,753 2,886 3,023 3,163 3,308 3,454 3,605 3,758
2,276 2,399 2,524 2,653 2,785 2,920 3,058 3,200 3,346 3,494
2,302 2,426 2,552 2,683 2,816 2,952 3,092 3,235 3,383 3,532

2,328 2,452 2,580 2,713 2,847 3,984 3,127 3,271 3,420 3,572 3,728 3,887
2,353 2,478 2,608 2,742 2,877 3,017 3,160 3,306 3,457 3,610 3,768 3,928

2,378 2,505 2,636 2,772 2,908 3,049 3,194 3,342 3,495 3,649 3,809 3,971
2,404 2,533 2,664 2,801 2,940 3,082 3,228 3,378 3,532 3,688 3,849 4,013
2,429 2,559 2,692 2,836 2,971 3,113 5 3,568 3,727 3,890 4,055
2,454 2,585 2,720 2,860 3,001 3,146 3,296 3,448 3,606 3,765 3,930 4,097
2,478 2,611 2,747 2,888 3,031 3,178 3,329 3,483 3,642 3,803 3,969 4,138
2,503 2,638 2,775 2,918 3,062 3,210 3,362 3,518 3,679 3,841 4,009 4,180
2,528 2,663 2,803 2,947 3,092 3,242 3,397 3,553 3,715 3,880 4,049 4,222
2,553 .2,690 2,830 2,975 3,123 3,273 3,429 3,588 3,752 3,918 4,089 4,263

[
-

o
®
pe
o
N

@
>
E-S

38,5
39,5
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Table 7 (continued).
Tabelle I (Fortsetzung).

Height Diameter b.h., - Durchmesser - Diameter Height
Hohe om Hohe

Bedde " 5n 52 53 54 55 56 51 58 | 59 | o] 61] 62 |03
Total volume, cubic meter - Baummassen, fm - Totalmasse, w>

17 2,331 2,428 2,525 2,624 2,725-2,829 2,934 3,041
17,51 2,384 2,482 2,582 2,684 2,786 2,893 3,00l 3,109
18 2,435 2,535 2,638 2,742 2,846 2,955 3,065 3,177

18,5 | 2,487 2,589 2,694 2,800 2,906 3,018 3,171 3,244
3
V577
1343

20,5 | 2,690 2,800 2,913 3,028 3,143 3,263 »508

n
<
N
-

Al
N
v
n
-

-1
~
o
n
&)

o
N
0
N
B

O
3
[w
o
N

o
®
e
v
N
S
w
i
%)
n
N

VRV LE LS AN )

21 2,740 2,852 2,968 3,084 3,202 3,324
21,51 2,789 2,904 3,021 3,140 3,260 3,385
22 2,839 2,956 3,075 3,196 3,318

3,128 3,251 3,375
23 2,937 3,058 3,182 3,306 3,432

3
3
3
32'5 2,985 3,108 3,233 3,360 3,489 ;
3
3

635 3,767 3,901 4,041 4,182 4,323} 22,5

i3
Y573 3,703 3,835 3,972 4,111 4,250 22
1697 3830 3,967 4,110 4,253 4,396] 23

»758 3,894 4,033 4,178 4,323 4,469 23,5
819 3,957 4,098 4,245 4,393 4,542} 24

. 3 ,880 4,021 4,164 4,313 4,464 4,614 24,5
3,130 3,258 3,390 3,523 3,658 1939 4,083 4,228 4,379 4,532 4,685] 25
25,513,178 3,309 3,442 3,576 3,714 3,856 3,999 4,145 4,295 4,446 4,601 4,757| 25,5

26 3,226 3,358 3,494 3,631 3,770 3,914 4,060 4,207 4,357 4,513 4,671 4,828 26
2?,5 3,273 3,407 3,544 3,684 3,825 3,971 4,119 4,269 4,421 4,579 4,739 4,899 g$,5

2 3,320 3,456 3,596 3,736 3,880 4,028 4,178 4,330 4,484 4,645 4,807 4,969
27,5 | 3,367 3,505 3,647 3,789 3,935 4,085 4,237 4,391 4,548 4,711 4,875 5,039{ 27,5
3,413 3,554 3,698 3,842 3,390 4,142 4,296 4,452 4,611 4,777 4,943 5,109| 28
28,5 | 34460 3,602 3,748 3,895 4,044 4,198 4,355 4,513 4,674 4,841 5,01l 5,180| 28,5
29 3,506 3,650 3,797 3,946 4,097 4,254 4,413 4,573 4,736 4,906 5,077 5,248| 29
29,5 § 3,552 3,698 3,847 3,998 4,150 4,309 4,4To 4,632 4,797 4,969 5,143 5,316 [ 29,5
30 3,597 3,745 3,897 4,049 4,204 4,365 4,528 4,693 4,860 5,034 5,210 5,385| 30
30,5 | 3,643 3,793 3,946 4,101 4,258 4,421 4,586 4,752 4,922 5,098 5,276 5,454 | 30,5
31 3,689 3,840 3,996 4,152 4,311 4,476 4,643 4,812 4,983 5,162 5,342 5,522] 31
31,5 | 3,734 3,888 4,045 4,205 4,364 4,531 4,700 4,87 5,044 5,225 5,408 5,590 31,5
32 3,780 3,936 4,094 4,255 4,418 4,587 4,758 4,931 5,106 5,289 5,474 5,659| 32
32,5 13,825 3,082 4,143 4,305 4,470 4,641 4,814 4,989 5,167 5,352 5,539 5,725} 32,5
33 3,869 4,028 4,191 4,355 4,522 4,695 4,870 5,047 5,227 5,414 5,603 5,792| 33
33,513,914 4,075 4,239 4,406 4,574 4,749 4,926 5,105 5,286 5,476 5,668 5,859| 33,5
34 3,959 4,122 4,288 4,457 4,627 4,804 4,983 5,164 5,348 5,540 5,734 5,927| 34
34,5 | 4,003 4,168 4,336 4,506 4,679 4,858 5,038 5,222 5,408 5,602 5,797 5,992| 34,5
35 4,047 4,214 4,384 4,556 4,730 4,911 5,095 5,279 5,468 5,664 5,861 6,059 35
5,724 5,924 6,123} 35,5

36 | 4,135 4,305 4,479 4,654 4,833 5,018 5,205 5,394 5,586 5,787 5,988 6,190 | 36
36,5 | 4,179 4,351 4,527 4,704 4,884 5,071 5,260 ,848 6,052 6,256 | 36,5
31 4,223 4,396 4,574 4,753 4,935 5,124 5,315 »909 6,115

37,5 | 4,267 4,442 4,621 4,803 4,987 5,177 5,370 1970 6,179

5
a
35,5 | 4,091 4,259 4,431 4,605 4,781 4,964 5,149 5,335 5,526
5
>
: z
5
38 4,309 4,486 4,668 4,850 5,036 5,229 5,424 5,621 5,821 6,030 6,240 6,451 38
6
6
6

um
-]
[+1]
n
-

-3
Q
>

AN\

38,5 | 4,353 4,532 4,715 4,900 5,088 5,282 5,479 5,678 5,881 6,091 6,304 6,516 | 38,5
39 | 4,396 4,577 4,762 4,948 5,138 5,334 5,534 5,735 5,939 6,151 6,366
39,5 14,439 4,621 4,808 4,997 5,188 5,387 5,587 5,791 5,996 6,212 6,428 6,645} 39,5
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Table 7 (continued).
Tabelle I (Forlsetzung).

Fé;ght Diameter b.h. - Durchmesser - Diameter Height
Hohe cm Hohe
80382 [ 63 ] 64 | 65] 66 ] 67] €8] 69T 70 7] 72 73] 74 |H030

n
Total volume, cubic meter - Baummassen, fm - Totalmasse, n3

22 4,392 4,538 4,685 4,834 4,989

84 5,648 5,817 5,985 6,159 6,334 | 23

4

574 5,741 5,913 6,084 6,260 6,439 | 23,5
ggs 5,834 6,009 6,183 24
844

5
5) ?

24 14,694 4,849 5,006 5,165 5,331 5, , 6,362 6,543
24,5 | 4,769.4,928 5,086 5,248 5,417 5,583 5,756 5,928 6,05 6,282-6,464 6,648 24,5

4,841 5,003 5,164 5,328 5,500 5,669 5, 6,019 6,198 6,378 6,563 6,750 | 25
25,5 | 4,916 5,079 5,243 5,416 5,583 5,756 5,933 6,111 6,294 6,476 6,664 6,853 | 25,5
26 | 4,990 5,156 5,322 5,492 5,668 5,842 6,023 6,203 6,389 6,573 6,764 6,957 | 26
26,5 15,062 5,231 5,400 5,572 5,751 5,928 6,111 .6,294 6,482 6,670 6,863 7,058} 26,5
27 | 5,135 5,307 5,477 5,652 5,833 6,013 6,198 6,384 6,575 6,765 6,961 7,160 27
27,5 | 5,209 5,381 5,556 5,732 5,916 6,098 6,287 6,474 6,668 6,861 7,060 7,261 27,5
28~ | 5,281 5,456 5,633 5,811 5,998 6,183 6,374 6,564 6,761 6,957 7,158 7,362| 28
28,5 | 5,353 5,531 5,709 5,891 6,080 6,267 6,461 6,655 6,853 7,052 7,256 7,463 ] 28,5
29 | 5,424 5,604 5,785 5,969 6,160 6,351 6,546 6,742 6,944 7,145 7,352 7,561 | 29
29,5 | 5,494 5,677 5,860 6,047 6,240 6,433 6,6%L 6,830 7,034 7,238 7,447 7,660 29,5
% |5,565 5,751 5,936 6,125 6,322 6,514 6,717 6,918 7,125 7,332 7,544 7,759 3o
30,5 | 5,636 5,824 6,012 6,203 6,401 6,600 6,803 7,006 7,216 7,425 7,640 7,858 | 30,5
351 |5,707 5,896 6,087 6,281 6,482 6,682 6,888 7,095 7,306 T,518 7,736 7,956 | 31
21,5 |5,777 5,969 6,161 6,357 6,561 6,764 6,973 7,181 7,396 7,610 7,831 8,054 | 31,5
32" |15,848 6,042 6,237 6,436 6,642 6,847 7,059 7,270 7,486 7,703 7,927 8,153 | 32
32,5 | 5,917 6,114 6,311 6,512 6,720 6,928 7,142 7,355 7,575 7,795 8,020 8,249 | 32,5

33 5,985 6,184 6,384 6,587 6,798 7,008 7,224 7,441 7,663 7,885 8,113 8,345 | 33

33,5 | 6,055 6,256 6,458 6,664 6,877 7,090 7,307 7,527 7,752 7,976 8,207 8,441 33,5
,533 6,741 6,957 7,172 7,392 7,614 7,842 8,069 8,302 8,539 | 34
»816 7,034 7,251 7,475 7,698 7,929 8,158 8,395 8,634 | 34,5

,891 7,112 7,332 7,558 T,784 8,017 8,249 8,488 8,730 | 35
,750 6,965 7,188 7,409 7,638 7,867 8,102 8,336.8,578 8,823 | 35,5

36 |6,397 6,610 6,824 7,040 7,266 7,490 7,721 7,952 8,190 8,428 8,672 8,919 | 36
36,5 | 6,465 6,680 6,896 T,115 7,343 7,570 7,804 8,037 8,278 8,517 8,764 9,014 | 36,5
7,189 7,420 7,649 7,885 8,121 8,364 8,606 8,855 9,108 | 37
57,5 | 6,601 6,820 T,040 T,265 T,497 7,729 7,967 8,205 8,451 8,696 8,947 9,202 | 37,5
38’ | 6,667 6,888 7,111 7,337 7,572 7,806 8,046 8,287 8,535 8,782 9,037 9,294 | 38
38,5 | 6,735 6,958 7,183 7,411 7,649 7,885 8,129 8,372 8,622 8,872 9,129 9,389 | 38,5
6,801 T,027 7,254 7,485 7,725 7,963 8,209 8,455 8,708 8,960 9,219 9,482
39,5 | 6,867 7,096 7,324 7,558 7,800 8,041 8,289 8,557 8,792 9,047 9,309 9,574.{ 33,5
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plantningsforseg i Gludsted Plantage, Hedeskovenes Foryngelse,
VII (Une Expérience de plantation d’un sous-étage dans la
plantation de Gludsted située dans la lande de Jutland), S. 305.
— Nr. 147. E. C. L. LorTtiNg: Lerkearternes Udvikling i Hede-
plantagerne og Japansk Lerks Anvendelighed som Hjaelpetre
ved Opbygning af Hedeskov, Hedeskovenes Foryngelse VIII.
(Le développement des différentes espéces de méléze dans les
plantations des landes, et le méleze de Japon utilisé comme
arbre auxiliaire dans la culture de foréts des landes), S. 321.
— H. 5: Nr. 148. KieLp LaperoGep: De enkelte Kronedeles
produktionsmaessige Betydning hos Redgran (The productive
importance of the individual parts of the crown in spruce,
picea excelsa L.), S. 365.

Bd. XVII, H.1: Nr. 145. CARL MAR: MOLLER: Untersuchungen
iiber Laubmenge, Stoffverlust und Stoffproduktion des Waldes.
(Undersggelse over Leovmaengde, Stoftab og Stofproduktion i
Skov). Dansk Resumé. S. 1. — H. 2: Nr. 150. C. MuHLE LARSEN:
Experiments with softwood cuttings of forest trees (Forsgg med
urteagtige Stiklinger af Skovireer). Meddelelse Nr. 18 fra Skov-
treeforsedlingen, Arboretet, Horsholm. S. 289.

Bd. XVIII, H. 1: Nr. 149. C. H. BorneBuscH og H. A. HeNRik-
SEN: Bggens Vedmassefaktorer, 1. Del: Formtalsbestemmelse ved
Hjeelp af Standardtabeller for mindre Bevoksninger af Bag, (Form
factor calculation by means of standard tables for small stands
of beech). S. 1. — H. 2: Nr. 157. MaTHIiAS THOMSEN, N. FABRI-
Tius BucHwALD og Pour A, HauBeERrG: Angreb af Cryptococcus
fagi, Nectria galligena og andre Parasiter paa Bgg i Danmark
1939—43. (Attack of Cryptococcus fagi, Nectria galligena and
other parasites on beech in Denmark 1939—43). S. 97. H. 3:
Nr. 1568. E. C. L. LorTiNG: Redgranplantagernes Foryngelse i de
jydske Hedeegne. 1. Del: Foryngelsesproblemerne. (Regeneration
of Norway Spruce in the Danish heath regions. 1’ part: The
problems of the regeneration). S. 327.

Bd. XIX, H. 1: Nr. 152. C. H. BorNeEBUSCH: Bggeskovens
Behandling paa Boller Skovdistrikt. (Le traitement appliqué par
E. Moldenhawer a la forét de hétres du domaine forestiére de
Boller), S.1. — Nr.153. F. Krarur: Langsom Begeselvforyngelse.
(Régénération naturelle lente d’'un peuplement de hétre). S. 81.
— H. 2: Nr. 154. CArL MAR: MOLLER: Mycorrhizae and nitrogen
assimilation (Mycorrhizer og Kvelstofassimilation) S. 105. —
H. 3: Nr. 155. C. H. BornEBuscH: Egeproveflader i N ordsjel-
land. (Places d’essai de chéne au nordest de Seeland). S. 205.
Nr. 156. C. A. JorGeNSEN og CeciL Trescuow: Om Bekem-
pelse af Rodfordzerveren (Fomes annosus (FR.) CKE) ved
Fladrodplantning og ved Kalk- og Fosfattilskud. (On the con-
trol of root- and butt-rot, caused by Fomes annosus (FR.) CKE
by superficial planting and by the application of lime and phos-
phate). S. 253. H. 4: Nr. 159. Is THuLIN: Beskadigelser af Dou-
glasgran (Pseudotsuga taxifolia) i Danmark i Vinteren 1946—47.
(Damage to Douglasfir (Pseudotsuga taxifolia) in Denmark in the
winter of 1946—47). S. 285. H. 5: Nr. 160. MOGENS ANDERSEN:
Form factor investigations and yield tables for Japanese larch in
Denmark. (Formtal og tilvaekst for japansk leerk). S. 331.



Bd. XX, H. 1: Nr. 151. E. C. L. LortiNGg: Danmarks skovfyr-
problem. (Scots pine problems on the heaths and dunes of Den-
mark) s. 1. — H. 2: Nr. 161. Just HorLTEN: Kulturméider i
Danmarks gamle skovegne 1950. (Methods of Establishment on
Old Woodland Sites in Denmark 1950). S.111. — H. 3: Nr. 162.
E. OxsBiERG: Radgranplantagernes foryngelse i de jydske hede-
egne. (Regeneration of Norway spruce plantations on the heaths
of Jutland). S. 165. — Nr. 163. H. A. HENRIKSEN: Dimensions-
klassefordeling for Bgg. (Allocation to diameter classes for
beech). S.229. — H. 4: Nr.164. J. A. LovenNGrReeN: Udhug-
ning i bag i Danmark siden 1900, statistisk belyst og teoretisk
bedemt. (Thinning of beech in Denmark since 1900, illustrated
statistically and assessed theoretically). S.271. — H. 5.: Nr. 165.
J. A. LovENGREEN: Analyse af en afsluttet proveflade i redgran.
(Analysis of a completed Sample Plot in Norway Spruce). S. 355.
— Nr. 166. H. A. HENRIKSEN: Bemerkninger til udhugnings-
forsoget i bog i Arhus kommunes skove. (Revision d’une ex-
périence de coupes d’éclaircis de hétre dans les foréts de la
municipalité de Arhus). S. 373. — .Nr. 167. H. A. HENRIKSEN:
Et udhugningsforseg i ung beg. (Durchforstungsversuch in
jungem Buchen-Bestand). S. 387. — Nr. 168. H. A. HENRIKSEN:
Et udhugningsforsgg i sitkagran. (Durchforstungsversuch in
einem Bestand von Sitka-Fichten). S. 403.

Bd. XXI, H. 1: Nr. 169. C. H. BornEBUscH {: Ngrholm
Hede. Tredje beretning. (Lande de Nerholm. Troisiéme rap-
port). S. 1 — Nr. 170. NieLs HaarLov og BropeEr BEIER PE-
TERSEN: Temperaturméalinger i bark og ved af Sitkagran. (Mea-
surements of temperature in bark and wood of Picea sitchen-
sis). S.43. — H.2: Nr. 171. Davip Foc and ARNE JENSEN: Ge-
neral volume table for beech in Denmark. (Almindelig masse-
tabel for beg i Danmark). S.93. — Nr.172. H. A. HENRIKSEN:
Die Holzmasse der Buche. (Bogens vedmasse). S. 139. — Nr. 173.
H. A. HENRIKSEN og ERIK JORGENSEN: Rodfordzrverangreb i re-
lation til udhugningsgrad. En undersogelse pa eksperimentelt
grundlag. (Fomes annosus attack in relation to grade of thin-
ning. An investigation on the basis of experiments). S. 215.

DET FORSTLIGE FORSYGSVAESEN I DANMARK

udgives ved den forstlige forsegskommission under redaktion af for-
standeren, i hefter sedvanlig pa 5—10 ark, der udsendes fra Statens
forstlige Forsegsvaesen, Mellevangen, Springforbi. Cirka 25 ark (400
sider) udger et bind.-Prisen pr. bind er 10 kr., skovbrugsstuderende 5
kr., der tages ved posigiro samtidig med udsendelsen af 1ste heefte.

Fortegnelse over indholdet af bd. [—X, 1905—1930, beretninger nr. 1—95
og nr.97, findes i slutningen af 10de bind og af bind XI—XX, 1930—
1951, beretninger nr. 96 og 98—168, i slutningen af 20de bind. Disse for-
tegnelser tilsendes gratis ved henvendelse til forsggsveaesenet.

Fortegnelse over indholdet af bd. XV—XXI er anfort pd omslaget.

KA Paw . HAVYN



